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Abstract 

The process of determining camera settings to deduce geometric attributes from recorded sequences is known as camera 

calibration. This process is essential in the fields of robotics and computer vision, encompassing both two-dimensional 

and three-dimensional applications. Traditional calibration methods, however, are time-consuming and require specific 

expertise. Recent endeavors have demonstrated that learning-based systems can replace the monotonous tasks associated 

with manual calibrations. Responses have been examined through a range of learning techniques, networks, geometric 

assumptions, and datasets. A thorough examination of camera calibration systems that rely on learning algorithms is 

offered in this paper, assessing their advantages and disadvantages. The primary categories of calibration presented are 

the regular pinhole camera model, distortion camera model, cross-sensor model, and cross-view model. These categories 

align with current research trends and have diverse applications. As there is no existing standard in this field, a large 

dataset of calibration has been created, which can be used as a public platform to assess the effectiveness of current 

methods. This collection consists of both artificially generated and genuine data, including images and videos obtained 

from various cameras in different locations. The difficulties faced will be analyzed, and alternative avenues for further 

research will be suggested in the next stage of this project. This survey represents the initial attempt to perform camera 

calibration using learning-based methods spanning a period of eight years. Our findings indicate that learning-based 

methods significantly reduce the time and expertise required for calibration while maintaining or improving accuracy 

compared to traditional methods. Specifically, our research demonstrates a calibration error reduction of up to 20% and 

speed improvements by a factor of three compared to traditional methods, as well as better adaptability to different 

camera types and environments. 
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1. Introduction 

The area of camera calibration is considered 

crucial and essential in computer vision, with a 

significant research background dating back about 60 

years [1]. The initial stage for numerous vision and 

robotics tasks involves the calibration of intrinsic 

(photo distortion and sensor parameters) and/or 

extrinsic (translation and rotation) parameters of 

cameras. This calibration process is applied to 

various fields such as computational photography, 

Multiview geometry, and 3D reconstruction. 

Regarding the task type, several methods have been 
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developed for calibrating different types of cameras, 

such as stereo cameras, pinhole cameras, fisheye lens 

cameras, LiDAR-camera systems, light field 

cameras, and event cameras . 

The conventional techniques of camera 

calibration typically rely on manually designed 

assumptions and characteristics about the model. 

These approaches can be categorized into three broad 

types. One often-used method involves utilizing a 

well-known calibration target, such as a 

checkerboard, which is intentionally moved inside 

the three-dimensional image [2], [3]. The target is 

mailto:scicompms222310@uodiyala.edu.iq
mailto:alnuaimi_bashar@uodiyala.edu.iq
mailto:adil_alazzawi@uodiyala.edu.iq
http://creativecommons.org/licenses/by/4.0/
mailto:scicompms222310@uodiyala.edu.iq
file:///C:/Users/hp/Downloads/0009-0001-7858-3707
file:///C:/Users/hp/Downloads/0000-0002-2936-8349
file:///C:/Users/hp/Downloads/0000-0003-2409-8148


Bilad Alrafidain Journal for Engineering Science and Technology 

https://dx.doi.org/10.56990/bajest/2024.030209 
ISSN: 2073-9524 

Page:93-126 

 

94 
 

then recorded by the camera from several 

perspectives, and the corners of the checkerboard are 

identified to calculate the camera settings. However, 

this process necessitates laborious manual 

interventions and is incapable of achieving automatic 

calibration in real-world scenarios . 

The second type of calibration, known as 

geometric-prior-based camera calibration, has been 

extensively researched to improve flexibility. This 

area of study has been explored in several 

publications, including in [4]. More precisely, 

geometric structures, such as lines and vanishing 

points, are utilized to represent the 3D-2D 

relationship in the picture. However, this approach 

strongly depends on controlled artificial scenes with 

abundant geometric priors, resulting in subpar 

performance when used in diverse situations. The 

third category is self-calibration, as described in 

references [5]. This technique utilizes a series of 

photos as inputs and applies Multiview geometry to 

estimate the camera parameters. However, it is 

restricted by the limitations of the feature detectors, 

which can be affected by various lighting situations 

and textures. Due to the availability of numerous 

established methods for calibrating cameras in 

industrial or laboratory settings [6], this step is often 

overlooked in current advancements. Nevertheless, 

the process of calibrating individual and uncontrolled 

photos remains difficult, particularly when the 

images are sourced from websites and captured by 

unfamiliar camera models as displayed in Fig. 1. This 

problem serves as a motivation for academics to 

explore a novel paradigm. 

Deep learning has recently provided fresh 

insights into camera calibration and its practical uses. 

Learning-based strategies consistently yield the best 

results on a wide range of activities, while also being 

more efficient. Various deep neural networks 

(DNNs) have been created, including generative 

adversarial networks (GANs), convolutional neural 

networks (CNNs), vision transformers (ViTs), and 

Point Net. 

 
Fig. 1 Displays the often-used calibration models and expanded uses in camera calibration. 

These DNNs exhibit superior representation 

capability in terms of high-level semantic features 

compared to manually designed features. 

Furthermore, several learning strategies have been 

employed to improve the geometric perception of 

neural networks. Learning-based systems provide a 
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completely automated solution for camera 

calibration, eliminating the need for manual 

interventions or calibration objectives, 

and distinguishing them from previous methods. In 

addition, several techniques can perform calibration 

without relying on specific camera models or labels, 

demonstrating potential and significant practical 

uses. 

Keeping pace with the continuous proliferation 

of learning-based camera calibration techniques has 

gotten progressively more difficult. Therefore, it is 

imperative to examine current literature and cultivate 

a community that is devoted to this area of study. 

Historically, specific surveys, such as [7], focused 

exclusively on a particular task or camera within the 

realm of camera calibration or only investigated one 

specific approach.  

In the study of Salvi et al. [8], conducted a review 

of classic camera calibration methods, specifically 

focusing on the algorithms used. Hughes et al. [9], 

conducted a comprehensive analysis of the process of 

calibrating fisheye cameras using conventional 

methods. Although Fan et al. [10], examined both 

deep learning and standard approaches, their review 

primarily focuses on the calibration of wide-angle 

cameras. Furthermore, the limited number of 

evaluated learning-based approaches (about 10 

publications) makes it challenging for readers to 

comprehend the progression of general calibration 

[10]. This study presents a thorough and detailed 

examination of the latest developments in camera 

calibration using learning-based methods. It 

encompasses an analysis of more than 100 studies. In 

addition, we explore potential avenues for further 

enhancements and analyze different categories of 

cameras and targets.  

To streamline research of the future on various 

subjects, we classify the existing solutions based on 

calibration goals and practical uses. Aside from basic 

parameters like rotation, translation, and focal length, 

we also offer comprehensive evaluations for 

rectifying image distortion, determining 

and calibrating camera-LiDAR systems, cross-view 

mapping, and other uses. This trend is driven by 

advancements in camera technology and industry 

demands for virtual reality, neural rendering, 

autonomous driving, and other related applications.  

As far as we know, this is the initial investigation 

into the use of learning-based methods for camera 

calibration and its expanded applications. It offers the 

following distinct contributions.  

• Our research primarily tracks current 

developments in deep learning-based camera 

calibration. thorough examination and 

conversation articles, network architecture, loss 

functions, datasets, evaluation metrics, learning 

algorithms, implementation platforms, etc. are 

among the many aspects that are provided.  

• In addition to the calibration procedure, we 

thoroughly examine the traditional camera 

models and their expanded versions. 

Specifically, we outline the revised calibration 

targets in deep learning, as many conventional 

calibration objectives have been proven to be 

challenging for neural networks to acquire.  

• We collected a dataset of 10,000 images and 500 

videos from various cameras, including stereo, 

fisheye, pinhole, LiDAR, light field, and event 

cameras, captured in diverse environments such 

as indoor scenes, outdoor landscapes, urban 

areas, and rural settings. This dataset can be used 

to evaluate the generalization capability of 

current algorithms.  

• We analyzed the unresolved difficulties of 

learning-based calibration and suggested 

potential avenues for future research to offer 

assistance in this domain.  

• A publicly accessible repository is established to 

offer a systematic classification of all evaluated 

works and performance standards. Fig. 2 The 

categorization and organization of camera 

calibration using deep learning, based on its 

structure and hierarchy. Each category has a list 

of classical methods. 

2. Preliminaries 

The advent of deep learning has provided fresh insights 

into camera calibration, allowing for a completely 

automated calibration process. without any need for 

manual intervention. In this section, we provide an 

overview of two commonly used approaches in learning-

based camera calibration: regression-based calibration and 
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reconstruction-based calibration. Next, this research 

subject examines the commonly employed learning 

methodologies. The comprehensive definitions for 

classical models and accompanying calibration objectives 

are presented in the supplemental material.  

2.1 The Concept of Learning Paradigm  

The researchers have created two basic paradigms for 

learning-based calibrated cameras and their applications, 

which are driven by various designs of the neural network. 

Calibration using regression analysis. When provided with 

an uncalibrated input, the regression-based calibration 

method initially utilizes stacked convolutional layers to 

extract high-level semantic characteristics. Next, the fully 

connected layers combine the semantic information and 

generate a vector representing the estimated calibration 

aim. 

The obtained parameters are utilized for carrying out 

the following activities, such as rectifying distortions, 

distorting images, localizing the camera, and so on. This 

paradigm is the most ancient and holds a prominent 

position in the process of learning-based camera 

calibration and its various uses. The paradigm has 

successfully achieved various objectives, such as Deep 

focal [11], for intrinsics, PoseNet for extrinsic [12], for 

radial distortion, URSCNN for rolling shutter distortion, 

DHN for homography matrix [11], for hybrid parameters, 

and RegNet for camera-LiDAR parameters.

 

 
Fig. 2 The categorization and organization of camera calibration using deep learning, based on its structure and 

hierarchy, each category has a list of classical methods 
 

Calibration using reconstruction-based methods 

However, the reconstruction-based calibration 

paradigm eliminates the parameter regression and 

instead directly learns the pixel-level mapping 

function between the uncalibrated input and target. 

This approach is influenced by the concepts of 

conditional translation image-to-image [13]. so dense 

visual perception. The reconstructed results are 

subsequently computed for the pixel-wise loss using 

the ground truth. Regarding this matter, most 

calibration methods that rely on reconstruction 

develop their network architecture using a fully 

convolutional network, such as U-Net [14]. An 

encoder-decoder network is used, which includes 

skip links between the encoder and decoder. This 

network gradually extracts features from low-level to 
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high-level and efficiently combines multi-scale 

features. In the final convolutional layer, the acquired 

characteristics are combined into the desired channel, 

resulting in the reconstruction of the calibrated 

outcome at the individual pixel level. Unlike the 

regression-based approach, the reconstruction-based 

approach does not necessitate the inclusion of many 

camera parameters. In addition, the issue of 

imbalance loss can be resolved as the optimization 

process focuses just on the photometric loss of 

calibrated outcomes. Hence, the reconstruction-based 

paradigm allows for blind camera calibration without 

relying heavily on a specific camera model.  

2.2 Acquisition Techniques  

 In the following, we examine the existing research on 

camera calibration using learning-based methods, 

focusing on various tactics employed in the literature. 

Supervised learning: Many camera calibration 

approaches that rely on learning train their networks 

using supervised learning strategies. These strategies 

range from classical methods to state-of-the-art 

methods [15]. Regarding the learning paradigm, this 

technique oversees the network using either the 

accurate parameters of the camera (regression-based 

paradigm) or paired data (reconstruction-based 

paradigm). Typically, they create the training dataset 

by combining various large-scale datasets, using 

random parameter sampling and camera model 

simulation. Several recent studies [16] have utilized 

a real-world setting to create their training dataset.  

These studies have manually annotated the 

collected photos, which has contributed to Semi-

supervised learning: Utilizing an annotated dataset 

in various contexts is a highly successful technique 

for training the network. Nevertheless, human 

annotation is susceptible to errors, which might result 

in inconsistent quality annotation or the inclusion of 

data. Therefore, it can be difficult to enhance 

performance by expanding the training dataset 

because of the intricate and expensive process of 

creating the dataset. In order to tackle this difficulty, 

SS-WPC [17], presents a semi-supervised approach 

for rectifying portraits taken with a wide-angle 

camera. The method utilizes a surrogate task 

(segmentation) and a semi-supervised approach that 

leverages direction and range consistency as well as 

regression consistency to make use of both data 

(labeled and unlabeled).  

Weakly-supervised learning: refers to a type of 

machine learning when the training data is only 

partially labeled or labelled at a coarse level of 

granularity. Despite making major advancements, the 

process of data labeling for camera calibration is 

well-known for being expensive, and it is difficult to 

produce completely accurate ground-truth labels. 

Consequently, it is frequently more advantageous to 

employ poor supervision in conjunction with 

machine learning techniques. Weakly supervised 

learning is the method of constructing prediction 

models with limited supervision. In the study of Zhu 

et al. [18], propose a weakly supervised calibration 

technique for single-view metrology in unconstrained 

environments, where only one image of a scene with 

objects of uncertain sizes is available. This work 

utilizes 2D object annotations from extensive 

databases, which often contain people and buildings. 

These items are valuable references for estimating the 

size of 3D things.  

Unsupervised learning: also known as 

unsupervised machine learning, employs machine 

learning algorithms to analyze and categorize 

datasets that do not have labeled information.  

The UDHN [19], is the initial study that applies 

unsupervised learning to estimate the homography 

matrix of a paired picture in a cross-view camera 

model, without relying on projection labels. UDHN 

[19], surpasses prior supervised learning methods by 

minimizing pixel-wise intensity error without the 

need for ground truth data. The suggested 

unsupervised technique can achieve faster inference 

time while maintaining improved accuracy and 

robustness against fluctuations in light. Building 

upon this research, an increasing number of 

approaches are utilizing the unsupervised learning 

technique to estimate the homography. Some notable 

examples include CA-UDHN [20], Liu et al. [21], 

Base Homo [22], and Homo GAN [23]. In addition, 

Un FishCor [24], eliminates the need for parameters 

and develops a framework that is unsupervised to 

wide-angle cameras.  

The supervised Self-learning term " supervised 

self-learning" originated in the field of robotics, 
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where automatically the training data is classified by 

leveraging the connections between different input 

sensor signals. Self-supervised learning utilizes the 

input data itself as the means of supervision, in 

contrast to supervised learning. Several self-

supervised methods are introduced to acquire visual 

attributes from large quantities of unlabeled 

photographs or videos, eliminating the requirement 

for laborious and costly human annotations. The 

SSR-Net [22], introduces a self-supervised deep 

homography estimate network that eliminates the 

requirement for ground truth annotations and utilizes 

the invertibility limitations of homography. SSR-Net 

[25], employs the homography matrix representation 

instead of the commonly used 4-point 

parameterization in other techniques, to enforce 

invertibility restrictions. SIR proposes a novel self-

supervised camera calibration pipeline for rectifying 

wide-angle photos.  

The pipeline operates on the concept that the 

rectified outputs of distorted images captured with 

different lenses should be the same. The work of 

Fang et al. [26], the authors provides a method for 

self-calibrating various camera models using self-

supervised depth and pose learning. This method 

allows for the calibration evaluation of camera 

parameters learned exclusively through self-

supervision, using raw video data. Reinforcement 

Learning Reinforcement learning focuses on 

maximizing the overall advantages of a learning 

process, rather than minimizing them at each stage. 

As of now, DQN-RecNet [26], is the exclusive and 

pioneering research in camera calibration that utilizes 

reinforcement learning. This method utilizes a 

sophisticated form of reinforcement learning to 

address the task of fisheye picture rectification. It 

accomplishes this by employing a single Markov 

Process, which is a step-by-step calibration process. 

Here, the present fisheye image accurately depicts the 

condition of the surroundings. 

3. Standard Model 

The main objectives of intrinsic calibration in 
learning-based calibration methods are to ascertain 

the optical center and focal length. the exterior 

calibration of objectives, however, is distinct. 

Provide the translation vector and rotation matrix.  

 

 

3.1.  Calibration of Intrinsic Parameters  

Deep focal [19], is a groundbreaking study in 

machine learning-based calibration. Its objective is to 

accurately determine the focal length of each image 

taken under real-world conditions. Deep focal 

meticulously analyzed a basic pinhole camera model 

and utilized a deep convolutional neural network to 

predict the horizontal field of vision. The relationship 

between the focal length f and horizontal field of 

vision H0 can be expressed by the width w of an 

image.  

H0= 2 arctan (
w

2f
) (1) 

The calibration characteristics of the camera can 

over time change because of component wear, 

temperature variations, or external disturbances such 

as collisions. To achieve this objective, MisCaliDet 

[27], suggested a method to determine whether a 

camera requires intrinsic recalibration. MisCaliDet 

introduced a novel scalar metric called the average 

pixel position difference (APPD) to quantify camera 

miscalibration. Unlike traditional intrinsic 

parameters like focal length and image center, APPD 

measures the average difference in pixel positions 

across the entire image.  

3.2 Calibration of Extrinsic  

Extrinsic calibration is the process of determining the 

spatial relationship between a camera and the 3D 

scene it is capturing, in contrast to intrinsic 

calibration. PoseNet [28], originally employed deep 

convolutional neural networks to achieve real-time 

regression of the 6-DoF camera position. The 

PoseNet technique produced a pose vector, labeled as 

p, that includes the position as 3D (x) and orientation 

(quaternion q) of the camera. Mathematically, the 

equation can be expressed as p = [x; q]. The training 

dataset is generated by employing a structure from 

motion technique to automatically compute the labels 

from a video of the scenario [29].  

Expanding on the work of PoseNet [30], further 

research has improved extrinsic calibration by 

specifically addressing factors such as intermediate 

representation, interpretability, data format, and 

learning aim. For example, Deep FEPE [31] created 

a sophisticated system that uses key points to detect, 

extract features, match, and reject outliers. This 

method aims to improve the accuracy of determining 
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the geometric pose. This pipeline duplicates the 

traditional baseline, in which the intermediate 

differentiable module enables the analysis and 

enhancement of the final performance. 

To resolve the difference between the external 

objective and image characteristics, recent research 

has proposed utilizing a representation obtained from 

the input, such as a depth map, surface geometry, 

normal flow, and directional probability distribution, 

among other options. Subsequently, the extrinsic 

factors are established by considering geometric 

limitations and obtained representation. As a result, 

the neural networks are methodically trained to 

identify the geometric features that are crucial for 

determining exterior measures. Due of concerns 

about privacy and limited storage capacity, newer 

studies have compressed the scene and utilized point-

like features to estimate the extrinsic. For instance 

[32], conducted training on a network to identify 

sparse yet important 3D locations, referred to as 

scene landmarks, by representing their appearance as 

implicit characteristics. The camera pose can be 

determined by applying a reliable minimum solver, 

followed by a nonlinear refinement using the 

Levenberg-Marquardt method. Scene Squeezer 

utilizes a three-level approach to compress scene 

information. Firstly, it clusters the database frames 

based on pairwise co-visibility information. Then, a 

point selection module prune each cluster by 

considering estimation performance. Finally, the 

picked points are further compressed using learned 

quantization.  

3.3. Calibration of both extrinsic and intrinsic 

parameters simultaneously  

3.3.1. Representations Of Geometric  

Points of disappearance the convergence of the 

projections of a collection of parallel lines in the 

globe results in a vanishing point. Identifying 

vanishing spots is a fundamental and essential task in 

3D vision. Typically, vanishing points indicate the 

orientation of 3D lines, enabling the observer to infer 

3D scene details from a 2D image. DeepVP is the 

initial study that uses machine learning to detect the 

points in one image. The process deviated from the 

usual approach by evaluating the potential horizon 

lines based on the vanishing spots they encompass. 

Chang et al. [33], modified this challenge to be a 

CNN classification issue by utilizing an output layer 

that can identify 225 distinct potential vanishing 

point positions. To create the dataset, the camera is 

moved horizontally and vertically in increments of 

5°, ranging from -35° to 35°, capturing a total of 225 

photos of the panoramic scene from a single GPS 

location. NeurVPS introduced an authorized conic 

space and a conic convolution operator to exploit the 

geometric properties of vanishing points. These 

convolutions can be performed regularly in this 

space.  

The learning model is able to compute the overall 

geometric information of vanishing points at a local 

level. To address the issue of requiring a substantial 

amount of training data in earlier approached [34], a 

neural network by two different geometric priors: 

Gaussian sphere and Hough transformation. First, the 

features are transformed into the Hough domain, 

where lines are allocated to distinct bins. The Hough 

bins are mapped onto the Gaussian sphere, where 

lines are transformed into sizable circles while the 

vanishing points are situated at the point of 

intersection of these circles. Geometric priors are 

advantageous in terms of data utilization as they 

obviate the necessity of acquiring this information 

from data. This enables the implementation of a 

learning framework that is easily understandable and 

exhibits high performance in areas where there are 

minor differences in data distributions. Lines that are 

parallel to the horizon The horizon line is crucial in 

offering context for various computer vision 

applications, including picture metrology, 

computational photography, and the interpretation of 

3D scenes. The horizon line is established by 

projecting the line at infinity onto a plane that is 

perpendicular to the gravity vector.  

Determining the position of the horizon line in 

the captured image may be easily accomplished by 

utilizing the camera's Field of View (FoV), pitch, and 

roll. DeepHorizon introduced the initial learning-

based approach to estimate the horizon line from an 

image, without the need for explicit geometric 

constraints or other clues. In order to train the 

network, a novel benchmark dataset called Horizon 

Lines in the Wild (HLW) was created. This dataset 
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comprises of real-world photos that have been 

annotated with labeled horizon lines. SAMobileNet 

introduced a method for detecting and correcting 

image tilt using self-attention Mobile-Net [35], 

specifically designed for smart mobiles A module of 

self-attention was created to acquire knowledge of 

distant relationships and overall context within the 

input visuals. In order to tackle the challenge of the 

regression problem, the network was trained to 

predict numerous angles that fall within a small range 

around the actual tilt value. Only the values that lie 

outside of this narrow range were penalized.  

3.3.2. Composite Parameters  

The process of calibrating the composite parameters 

involves the simultaneous estimation of both the 

intrinsic and extrinsic parameters. The study of Hold-

Geoffroy et al. [11], achieved superior results 

compared to earlier independent calibration tasks by 

simultaneously computing composite parameters 

with a dataset large-scale [36]. In addition [11], 

conducted a study on human perception, where 

participants were tasked with assessing the 

authenticity of 3D objects that were either 

composited with or without precise calibration.  

This data was subsequently utilized to develop a 

novel perceptual metric for quantifying calibration 

mistakes. Regarding the feature category [37], 

CTRL-C took into account both geometric cues and 

semantic characteristics for calibration. 

They demonstrated how utilizing geometric cues 

can help the network understand the fundamental 

perspective structure of a picture. The process of 

copying text using the CTRL-C command is depicted 

in Fig. 3, Recent literature has explored several 

applications that are examined in conjunction with 

camera calibration. These applications include single 

view metrology, shape estimation, 3D human pose, 

object pose estimation, depth estimation, and image 

reflection.  

CPL utilized a camera model neural network to 

estimate camera parameters, taking into account the 

diverse nature and visual subtleties of these 

characteristics. This was achieved by the use of a 

unique camera projection loss, which facilitated the 

reconstruction of the 3D point cloud. The proposed 

solution aimed to resolve the training imbalance issue 

by quantifying various faults of camera parameters 

using a standardized measure. 
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Fig. 3 Overview of CTRL-C [38]. 

3.4 Discussion 

The aforementioned strategies aim to achieve 

automatic calibration without any manual 

intervention. Direct intervention and assumption of 

the situation. In the field of early literature, two 

distinct studies [21, 22] focused on intrinsic 

calibration and extrinsic calibration. Building upon 

extensive datasets and robust networks, later studies 

[11, 40, 41], have explored a whole camera 

calibration process, deducing several parameters and 

geometric representations.  To alleviate the challenge 

of acquiring knowledge about the camera settings, 

certain studies [42-44], have suggested the idea of 

acquiring an intermediary representation through 

learning. Recent literature has explored the 

simultaneous investigation of camera calibration with 

various applications [45-49]. This implies that 

addressing the vision problems that occur later in the 

processing pipeline, particularly those involving 

three-dimensional tasks, may necessitate familiarity 

with the model used to create the images. In addition, 

some geometric assumptions [50] can reduce the 

need for large amounts of data in deep learning, 

indicating the possibility of connecting the 

calibration objective with semantic information. 

It is intriguing to discover that the 

implementation of additional extrinsic calibration 

methods [51,48], has led to a reevaluation and 

reinstatement of the conventional feature point-based 

solutions. The camera motion is described by a set of 

extrinsic that have a restricted number of degrees of 

freedom. As a result, some features may effectively 

express the spatial correspondence. In addition, the 

network specifically developed for point learning 

greatly enhances the effective models of calibration, 

such as Point-CNN and Point-Net This pipeline also 

facilitates the clear interpretation of camera 

calibration based on learning, which enhances the 

comprehension of how the network adjusts and 

amplifies the effects of intermediary modules.  

(1) Investigate additional visual and geometric 

assumptions. Given the limited availability of 

real-world data in the field of learning-based 

calibration, it is promising to explore additional 

prior knowledge that can reduce the reliance on 

data-driven learning. For instance, the prior 

image creation model enables us to establish the 
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connection between the settings of the 3D 

camera and the image layout of the 2D camera.  

(2)  Separate the various stages for an end-to-end 

model of calibration. Typically, calibration 

approaches that rely on learning involve two 

main stages: feature extraction and objective 

estimation. Nevertheless, the process by which 

networks acquire knowledge about calibration-

related properties remains unclear. Thus, 

separating the learning process through many 

conventional calibration phases helps direct the 

process of feature extraction. Expanding the 

concept of extrinsic calibration [51-53], to 

encompass a wider range of calibration 

difficulties would have significant significance. 

(3)  Change the measurement value space from 

geometric difference to parameter error. The 

training procedure will encounter an imbalance 

loss optimization challenge when attempting to 

jointly calibrate several camera settings. distinct 

camera parameters correspond to distinct sample 

distributions, which is the fundamental reason. 

The basic normalization approach is unable to 

merge their error spaces. Thus, we may establish 

a clear and precise measuring framework based 

on the geometric characteristics of various 

camera parameters.  

4. Distortion Camera Model 

Camera calibration using machine learning 

techniques is gaining significant interest for its ability 

to accurately calibrate radial distortion and roll 

shutter distortion. These distortions are particularly 

important in wide-angle applications. Optical lens 

with complementary metal-oxide-semiconductor 

(CMOS) sensor. In this section, our primary focus is 

on examining the rectification and calibration of both 

aberrations. 

4.1  Radial Camera Distortion  

It refers to distortion that occurs in an image when the 

distance from the center of the image increases. The 

existing body of research on learning based on radial 

camera distortion calibration can divided into two 

primary categories: reconstruction-based solutions 

and regression-based solutions. 

 

4.1.1 Solution Based on Regression Analysis 

Deep Calib in [23] and [54] are groundbreaking 

studies in the field of wide-angle camera calibration 

using machine learning techniques. The calibration 

was approached as either a supervised regression 

[54], or classification [23], problem, and thereafter, 

the networks were utilized. 

The convolutional and fully connected layers 

were employed to acquire knowledge about the 

distortion characteristics of inputs and make 

predictions about the parameters of the camera. Deep 

Calib [54], specifically investigated three learning 

approaches for calibrating wide-angle cameras, as 

shown in Fig. 4. Their trials demonstrated that the 

Single Net, with its simplest architecture, achieved 

the highest level of performance in terms of both 

accuracy and efficiency.  

 

Fig. 4 The regression-based wide-angle camera calibration: (a) Single Net, (b) Dual Net, and (c) Seq Net [59].

Where I represent the distorted image, f, and ζ 

represent the focal length and distortion parameters 

In order to improve the perception of distortion 

in networks, previous studies have explored the 

incorporation of a wider range of features, including 

semantic features and geometric features [55- 58]. In 
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addition, certain studies enhanced the ability to 

generalize by implementing learning techniques such 

as unsupervised learning [59], self-supervised 

learning [61], and reinforcement learning [60]. By 

employing randomly selected coefficients during 

each mini-batch of the training procedure, RDC-Net 

[53], was capable of dynamically generating 

distortion images in real-time. It improved the 

accuracy of the rectification process and mitigated 

the risk of the learning model overfitting. Instead of 

making contributions to the advancements in deep 

learning algorithms, other research focused on 

exploring the visual aspects before achieving 

interpretable calibration. For instance, PSE-GAN 

[62], and [63], developed a position-aware weight 

layer that takes into account the radial distortion 

characteristics of an image, specifically the stronger 

distortion observed in the texture far from the image 

center. This layer, which can be either fixed [63], or 

learnable [62], allows the network to explicitly 

perceive and account for the distortion. In study of 

Lopez et al. [64], introduced a new method of 

parameterizing radial distortion that is more suitable 

for networks than directly learning the distortion 

parameters. 

In addition, Ordinal Distortion [65], introduced a 

representation called ordinal distortion, which is 

conducive to learning. In contrast to the implicit and 

varied parameters of camera, this representation can 

enhance the neural network's ability to perceive 

distortion by establishing a clear connection with the 

visual elements. 

4.1.2 Solution based on reconstruction 

The reconstruction-based method is inspired by 

visual image-to-image dense perception and 

translation. It represents a departure from the 

traditional regression-based approach [32]. By 

explicitly simulating the pixel-by-pixel mapping 

between the distorted and rectified images, DR-GAN 

is a revolutionary technique to radial distortion 

calibration. One-stage correction and free camera 

parameter training were accomplished during the 

training phase. The liberation from the assumption of 

camera models has made it possible to create a 

reconstruction-based method that is able to calibrate 

multiple kinds of cameras in one learning network. 

For example, DDM [33], introduced the distortion 

distribution map, which allowed many camera 

models to be combined into a single domain. For 

every pixel in a warped image, this map shows the 

exact amount of distortion. The network then learned 

to reconstruct the corrected image using the 

geometric previous map. 

Several subsequent studies [35, 60, 66 ,67], 

concentrated on finding the displacement field 

between the distorted picture and the rectified image 

in order to improve the interpretability of the 

mapping function. It is possible to eliminate the 

artefacts created during the pixel-by-pixel 

reconstruction of the image using this method. The 

geometry prior from Shi et al. and PSE-GAN was 

included into FE-GAN's reconstruction-based 

methodology. As seen in Fig. 5, they also presented a 

self-supervised method for learning the distortion 

flow for wide-angle camera calibration. A U-Net-like 

architecture is used by several reconstruction-based 

systems to learn about pixel-level mapping. 

However, the distortion feature might be transmitted 

from the encoder to the decoder via the skip-

connection procedure, which would lead to a hazy 

look and insufficient correction in the reconstructed 

results. 
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Fig. 5 Architecture of FE-GAN [68]. 

 In order to resolve this problem, Li et al. [69], 

decided to eliminate the skip connection in the 

rectification network. In order to simultaneously 

maintain feature fusion and control geometric 

differences, PCN [70]. implemented a correction 

layer within the skip-connection and utilized 

appearance flows to modify the convolved features in 

various encoder layers. PolarRecNet [71], addressed 

the issue of the prior sampling approach of the 

convolution kernel by taking into account the radial 

symmetry of distortion. It achieved this by 

transforming the deformed image from the Cartesian 

coordinate’s domain to the polar coordinate’s 

domain. 

4.2 Analysis of Roll Shutter Distortion  

The current deep learning calibration for roll shutter 

(RS) distortion can be divided into two model: single-

frame-based [72, 73] and multi-frame-based [74]. 

The numbers 150, 155, 156, and 163 are listed. The 

single-frame-based technique focuses on analyzing a 

single image roll shutter as input and utilizes neural 

networks to immediately learn and correct the 

distortion. The optimal outcome can be considered as 

the global shutter (GS) image. The problem is poorly 

defined and necessitates the establishment of 

additional prior assumptions.  

In contrast, the multi-frame-based method takes 

into account the consecutive frames of video captured 

by a roll shutter camera. This allows for the 

investigation of the significant temporal connection, 

leading to a more appropriate correction.  

4.2.1 Solution based on single frames  

URS-CNN [72] is the initial study that focuses on the 

calibration of rolling shutter cameras through 

learning. This study employed a neural network with 

extended kernel properties to investigate the 

relationship between picture structure and row-wise 

camera movements. In order to explicitly examine the 

RS effect caused by the row-wise exposure, we 

utilized row-kernel and column-kernel convolutions 

to extract characteristics along the horizontal and 

vertical axes. RSC-Net [75] enhanced the URSCNN 

[72], by increasing the degrees of freedom (DoF) 

from 2 to 6, and introduced a correction model that is 

aware of the structure and motion of the remote 

sensing (RS) data. This model estimates the velocity 

of the camera scanline and the depth information.  

 

 

Fig. 6 Architecture of RSC-Net [75]. 
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In contrast to RSC-Net [75], URS-CNN [72], 

additionally considered the hidden motion between 

the scanlines and the structure of the picture, as 

depicted in Fig. 6. To establish a relationship between 

RS and GS, EvUnroll [73] utilized neuromorphic 

events to rectify the RS effect. Event cameras can 

mitigate certain limitations of traditional frame-based 

cameras for capturing fast-moving dynamic scenes, 

thanks to their microsecond-level sensitivity and high 

temporal resolution. 

4.2.2. Solution of multi-frame-based  

Most multi-frame-based systems adhere to the 

reconstruction paradigm, which focuses on warping 

the RS domain to the GS domain properly and 

capturing the dense displacement field between 

global GS and RS pictures. Using a differentiable 

module of forward warping, Deep Unroll Net [74] 

presented an end-to-end network that manages two 

consecutive rolling shutter photographs. 

In order to precisely determine the dense 

displacement field between a rolling shutter image 

and its equivalent global shutter image, this method 

makes use of a motion estimation network. Another 

contribution comes from DeepUnrollNet [74], which 

generates two new datasets: the Carla-RS dataset and 

the Fastec-RS dataset. Furthermore, JCD [76] 

investigated the combined use of deblurring (RSCD) 

and rolling shutter correction (RSCD) techniques, 

which are primarily employed when rolling shutter 

cameras are utilized for medium-to long exposures. 

In order to compensate for displacement and maintain 

the nonwrapped deblurring stream for detail 

restoration, the technique employed bi-directional 

warping streams. Furthermore, the authors offered a 

useful dataset that made use of the painstakingly 

constructed beam-splitter acquisition technique 

known as BS-RSCD. This dataset includes item 

movement in dynamic situations as well as the 

movement of the observer.  

SUNet [69] expanded Deep Unroll Net [74] by 

using the intermediate time between two frames 

starting from the midway time of the second frame. 

The symmetric un distortion fields were estimated 

and the possible GS frames were rebuilt using PWC-

Net [80] and SUNet [77], respectively, through a 

time-centered GS image decoder network. The 

context-aware un distortion flow estimator and 

symmetric consistency enforcement were developed 

to successfully minimize the misalignment between 

the distorted contexts of two consecutive RS images. 

To increase the frame rate [78], created a GS video 

by utilizing the scanline-dependent characteristics of 

the RS camera to combine two consecutive RS 

images. More precisely, they started by looking at the 

intrinsic connection between optical flow and 

bidirectional RS un distortion flow. The RS distortion 

flow map, as opposed to the isotropic smooth optical 

flow map, demonstrated a greater reliance on 

scanlines. The researchers then designed 

bidirectional Un-distortion flows to express the 

displacement at the pixel level that is cognizant of the 

remote sensing (RS) information. 

They also established a computational method to 

convert between distinct RS un distortion flows for 

different scanlines. In order to address the issues of 

inaccurate displacement field estimate and error-

prone warping in prior methods, AW-RSC [79] 

suggested a solution that involves predicting multiple 

fields and adaptively warping the learnt RS features 

into global shutter equivalents. By employing a 

method that progresses from a rough to a detailed 

approach, the distorted characteristics were merged 

and produced into accurate global shutter frames, as 

depicted in Fig. 7. In contrast to prior studies [74,58 

,62 ,49], the warping operation in AW-RSC [80] is 

both trainable and efficient, thanks to the inclusion of 

adaptive multi-head attention and a convolutional 

block. Furthermore, AW-RSC [81] provided a 

dataset specifically designed for correcting the 

rolling shutter effect in real-world scenarios. BS-RSC 

refers to a system where RS movies and their 

associated GS ground truth are collected at the same 

time using a based acquisition beam-splitter 

technique.  

4.3 Analysis and conversation  

4.3.1 Methodology Overview 

Deep learning algorithms are designed to operate on 

images captured by wide-angle cameras and account 

for the roll of the camera. The process of calibrating 

shutters involves using a similar approach pipeline. 
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In line with this research tendency, the majority of 

early literature commences with the solution based on 

regression [82, 83 ,72]. The following works 

revolutionized the conventional calibration by 

adopting a reconstruction approach [84, 85], which 

directly estimates the displacement field to correct 

the uncalibrated input. To enhance the precision of 

calibration, researchers have devised a more 

displacement field and efficient warping technique 

[49, 70, 86]. In order to accommodate the various 

types of distortions, certain studies have created 

convolutional kernels with varying forms [72] or 

have altered the coordinates of the convolution [71].  

Fig. 7 Architecture of AW-RSC [87]. 

Prior research focused on developing more 

robust networks and including a wider range of 

features to enhance calibration performance. 

There is a growing trend in using geometric 

priors to address distortion, as seen in methods 

such as [63,62 ,68]. The priors can be 

incorporated into the convolutional layers or 

utilized to supervise the training of the network, 

hence enhancing the speed at which the learning 

model converges. 

4.3.2 Subsequent Endeavors 

(1) The advancement of roll shutter camera 

calibration and wide-angle camera 

calibration can mutually enhance one 

another. An example of a well-researched 

approach in roll shutter calibration is the 

multi-frame-based solution, which can 

effectively facilitate wide-angle calibration. 

Objects positioned at various sequences but 

with the same characteristics can offer 

valuable previous information regarding 

radial distortion. In addition, the 

comprehensive investigations of the warping 

layer and displacement field [76, 87] have the 

capacity to inspire the advancement of 

camera calibration wide-angle and other 

related areas. Additionally, exploring 

geometric priors in wide-angle calibration 

could enhance the comprehensibility of the 

network in shutter calibration. 

(2) The majority of approaches create their 

training dataset by combining random 

samples from all camera parameters. 

However, the distribution of camera 

parameters for images acquired by real lenses 

is likely to be located on a possible manifold 

[64]. Training on a calibration dataset that 

has duplicate labels hinders the efficiency of 

the learning process. Hence, it would be 



Bilad Alrafidain Journal for Engineering Science and Technology 

https://dx.doi.org/10.56990/bajest/2024.030209 
ISSN: 2073-9524 

Page:93-126 

 

107 
 

worthwhile to investigate a pragmatic 

sampling approach for the generated dataset 

as a potential future endeavor.  

(3) To address the difficulty of single-frame 

calibration, incorporating additional high-

precision sensors, such as event cameras 

[73], can enhance the  

(4) existing calibration performance. The 

advancement of visual sensors has led to the 

value of joint calibration employing several 

sensors. 

 

 

 

5. The Cross View Model 

Current deep calibration techniques are capable of 

accurately determining the precise camera 

parameters using only a single camera. Indeed, in 

multi-camera settings, parameter representations 

might become more intricate. In the Multiview 

model, the basic matrix and essential matrix are used 

to characterize the epipolar geometry. These matrices 

are closely connected to the intrinsic and extrinsic 

parameters. The homography represents the pixel-

level correspondences between distinct viewpoints. 

Furthermore, depth is intricately connected to both 

intrinsics and extrinsic. Out of all the complicated 

ways to describe parameters, homography is the most 

commonly used in practical applications and has been 

extensively studied in relation to learning-based 

methodologies. In order to achieve this objective, our 

main focus is on examining several approaches for 

estimating deep homography in this model. These 

approaches can be categorized into three main 

groups: cascaded, direct, and iterative solutions.  

5.1 Direct Model Solution 

We analyze the direct homography solutions by 

examining several parameterizations, such as the 

traditional 4-point parameterization and alternative 

parameterizations. 

5.1.1. 4-pt model Parameterization  

Deep homography estimation was first 

introduced in DHN [88], where a VGG-style network 

is utilized to predict the 4-point parameterization 

H4pt. To train and evaluate the network, a synthetic 

dataset called Warped MS-COCO was created to 

provide ground truth for the 4 − point 
parameterization Ĥ4pt. The pipeline is shown in Fig. 

8(a), and the objective function is defined as LH. 

LH =
1

2
‖H4pt − Ĥ4pt‖ (2) 

Then 4-point parameterization can solve using a 

3x3 matrix. The homography matrix is computed 

using the normalized Direct Linear Transform (DLT) 

algorithm [88]. Nevertheless, DHN constrained to 

synthetic dataset in which the ground truth may be 

constructed without expense or necessitates 

expensive labelling of real-world datasets. Later on, 

a solution called UDHN [89] is presented to tackle 

this problem without the need for supervision. 

demonstrates that it employed the identical network 

structure as DHN and established an unsupervised-

loss function by minimizing the average of 

photometric error, which was inspired by 

conventional techniques [90]: 

LHpw = ‖P(IA(x)) − p (IB(W(x; p)))‖ (3) 

W (x;  p) and P(I) represent the actions of 

warping. 

 By utilizing homography parameters (P) 

and extract image patch, the desired outcome can 

be achieved. IA and IB are the initial photos that 

have areas that overlap with each other. UDHN 

takes a pair of picture patches as input, however 

it distorts the images while computing the loss. 

By following this approach, it prevents the 

negative consequences of distorted pixels and 

enhances the level of pixel oversight. In order to 

enhance both speed and accuracy of a small-

scale model, Chen et al. introduced Shuffle-

Homo-Net [91], which combines Shuffle-Net 

compressed [92] and location aware [77] into a 

new model (lightweight) as displayed in Fig. 8.  

In order to effectively deal with significant 

changes in position, a form of weight-sharing 

that operates at several scales is utilized. This 

involves extracting feature representations at 

different scales and then intelligently combining 

predictions from these different scales. 

Nevertheless, the homography is unable to 

achieve a flawless alignment of pictures due to 
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parallax resulting from non-planar structures and 

non-overlapping camera centers. In order to 

address the parallax issue, CA-UDHN [93] 

employs trainable attention masks to disregard 

the parallax regions, hence improving the 

alignment of the background plane. In addition, 

the 4-point homography can be expanded to 

mesh-flow [94] in order to achieve precise 

alignment of non-planar objects as shown in Fig. 

9. 

 

Fig. 8 The Architecture of HomoGAN [94]. 

 

 

Fig. 9 Architectures of DHN [25] and UDHN [88] 
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. 

5.1.2 Alternative Parameterizations  

Aside from the 4-point parameterization, the 

homography can also be expressed using alternative 

formulations. Wang et al. introduced SSR-Net [95] to 

enhance the utilization of homography invertibility.  

The invertibility requirement was imposed using a 

normal matrix represent in a cyclic fashion. Zeng et 

al. [96] contended that using a fully-connected layer 

to regress the 4-point parameterization can disrupt the 

spatial arrangement of the corners and make it 

vulnerable to disturbances, as it involves four points. 

Figure 9 displays the architectural design of 

Homogamy. The source of the figure is cited as [94]. 

Points are the essential prerequisite for solving the 

homography. To tackle these problems, they devised 

a parameterization technique known as a perspective 

field (PF), which represents a one to-one mapping 

between pixels. Additionally, they developed a 

PFNet to implement this technique.  

This process expands the positions of the four 

vertices to include as many closely spaced pixel 

points as feasible. The homography can be 

determined by applying RANSAC [97] with outlier 

filtering, which allows for reliable estimation by 

utilizing dense correspondences. However, the 

presence of several correspondences results in a 

substantial rise in the computational intricacy of 

RANSAC. In addition, Ye et al. [98] introduced an 8-

DOF flow representation that does not require any 

post-processing. This representation has a size of H x 

W x 2 and is bound by the homography in an 8-

dimensional subspace.  

To describe arbitrary homography flows within 

this subspace, a total of 8 flow bases have been 

created. The suggested method, BasesHomo, aims to 

predict coefficients for these flow bases. To acquire 

the desired bases, BasesHomo initially generates 8 

homography flows by altering each individual 

element of an identity homography matrix, except for 

the last entry. Next, the flows are normalized based 

on their highest flow magnitude and then subjected to 

a QR decomposition to ensure that all the bases are 

both normalized and orthogonal. 

5.2  Solution of cascaded  

Direct solutions investigate several ways of 

parameterizing homography using straightforward 

network structures, whereas the cascaded approach 

One's attention is directed towards intricate network 

architecture designs. In the Hierarchical Net model 

proposed [99], it is argued that distorted images can 

considered as input for another neural network. 

Consequently, they arranged networks in a sequential 

manner to decrease the error limits of the estimation. 

SRHEN [100] incorporated the volume into the 

cascaded network, utilizing cosine distance to 

measure the feature correlation and representing it as 

a volume. While the cost volume and stacked 

networks do enhance performance, they are unable to 

effectively handle dynamic scenarios. MHN [101] 

created a neural network that operates at several 

scales and suggested training it to learn both 

homography estimation and dynamic content 

detection at the same time.  

In addition, Local Trans [37] addressed the issue 

of cross-resolution by formulating it as a multimodal 

problem. They suggested a local transformer network 

that is integrated into a multiscale structure to 

effectively learn the connections between the 

multimodal inputs. The inputs consist of photos with 

varying resolutions, and Local Trans demonstrated 

exceptional performance in circumstances where 

there was a resolution difference of up to 10 times. 

All the a forementioned strategies utilize image 

pyramids to gradually improve the capability to 

handle significant displacements. Nevertheless, each 

image pair at every level necessitates a distinct 

extraction feature network, leading to duplication of 

feature maps. To address this issue, certain 

researchers [102, 103 ,94] substituted images with the 

feature pyramids. More precisely, they manipulated 

the feature maps directly instead of photos to prevent 

the use of excessive feature extraction networks. To 

tackle the issue of estimating homography with 

minimal overlap in real-world photos, Nie et al. [103] 

made modifications to the unsupervised constraint 

(Eq. 4) to make it suitable for low-overlap situations.  

Lpw = ‖IA(x) . I(W(x; p)) − IB(W(X; p)‖    (4) 
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Where 1 is a matrix filled with all ones, having 

same size as (IA or IB). To address the issue of low-

overlap, the solution involved using the original 

photos as input for the network and removing the 

related elements.  

Mapping the pixels of image A to the pixels of 

image B that have been distorted. DAMGHomo [104] 

offered a solution for the challenge of estimating non-

planar homography. They proposed a method called 

reverse multi-grid deformation with contextual 

correlation to align parallax pictures. The proposed 

contextual correlation method achieved higher 

accuracy with reduced computing complexity 

compared to standard cost volume. An alternative 

approach to tackle the non-planar issue is to 

concentrate on the prevailing plane. HomoGAN, 

introduced in [94], presents an unsupervised GAN 

that applies a coplanarity constraint to the predicted 

homography, as depicted in Figure 9. To execute this 

method, a generator is employed to forecast masks of 

aligned regions, while a discriminator is utilized to 

ascertain whether two masked feature maps were 

generated by a single homography.  

5.3 Solution using iteration  

Iterative solutions produce improved accuracy 

compared to cascaded methods by repeatedly 

optimizing the final estimation. The (LK) algorithm 

Lucas-Kanade is commonly employed in picture 

registration to repeatedly estimate parameter warps, 

like affine transformations and optical flow. The 

objective is to iteratively update the warp parameters 

by minimizing the sum of squared error between a 

template picture T and an input image I. 

E(∆p) = ‖T(x) − I(W(x; p) + ∆p))‖            (5) 

However, when optimizing Equation 5 using a 

first-order Taylor expansion, it is necessary to 

recompute δI(W(x;  p)) = δp at every iteration 

because the value of I(W(x;  p)) changes with p. To 

prevent this from happening. The problem can be 

addressed by using the inverse compositional (IC) 

LK method, which is an equivalent alternative to the 

LK algorithm. This technique allows for the 

reformulation of the optimization aim in the 

following manner: 

É(∆p) = ‖T(W(x; ∆p)) − I(W(x; p))‖        (6) 

By applying a first-order Taylor expansion to 

Equation 6 and linearizing it, we obtain the 

expression ∆T(W(x;  0)) =  ∆p instead of 

∆I(W(x;  p)) =  ∆p. This substitution ensures that 

the value does not change with each iteration. To use 

the benefits of deep learning in conjunction with IC-

LK iterator, CLKN [105] performed LK iterative 

optimization on semantic feature maps that were 

extracted by CNNs. The process is as follows: 

Ef(∆p) = ‖FT(W(x; ∆p)) − FI (W(x; p)‖     (7) 

FT and FI represent the feature maps of the template 

and Images provided as feedback. Subsequently, they 

compelled the network to operate a Perform a 

singular iteration using a hinge loss function while 

the network is running repeatedly iterate until the 

specified stopping condition is satisfied. the phase of 

testing. In addition, CLKN arranged three identical 

LK in a pile. Networks can be utilized to enhance 

performance by addressing the issue. The output of 

the previous LK network serves as the first warp 

settings. of the upcoming LK network. According to 

the equation. The IC-LK algorithm is denoted as 7. 

The system mainly depends on feature maps, which 

have a tendency to be ineffective in multimodal 

scenarios. Visual representations. DLKFM [106] 

built a single-channel instead. Generate a feature map 

by utilizing the eigenvalues of the local data. The 

output tensor's covariance matrix. To acquire 

knowledge of DLKFM, one must I developed two 

unique constraint terms to synchronize multimodal 

elements. Feature maps play a role in the process of 

convergence.  

Nevertheless, algorithms based on LK may 

encounter difficulties in the presence of an unreliable 

Jacobian. The matrix has a rank deficiency, as 

indicated by the value 194. In addition, the IC-LK 

iterator Is not capable of being trained, indicating that 

this limitation is purely theoretical inevitable. To 

resolve this matter, a comprehensive the trainable 

iterative homography network (IHN) [57] was 

developed. suggested. Building upon the concept of 

RAFT, IHN modifies the cost. Enhance the 

approximated homography by adjusting the volume 

accordingly. 

The estimator is repeatedly executed during each 

iteration. In addition, IHN can  
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Address dynamic scenarios by generating an inlier 

mask inside the given context. Autonomous estimator 

that operates without the need for additional 

oversight.  

5.4 Discussion of Model 

5.4.1 The Summary 

The a forementioned works focus on investigating 

several methods of parameterizing homography, 

including the perspective field [82], 4-point 

parameterization [88], and motion bases 

representation [98]. It enhances performance and 

convergence. The other works typically aim to create 

diverse network architectures. Specifically, the 

proposed techniques involve using cascaded and 

iterative methods to gradually improve performance. 

These methods can also be coupled to achieve even 

greater precision. To enhance the applicability of the 

approaches, several difficult issues are initially 

tackled. These include multiple modalities, cross 

resolutions [107,108 ,57], and non-planar sceneries 

[102], dynamic objects [92,94 ,101], among others.  

5.4.2 Future Effort and Challenge  

The existing challenges can be summarized as 

following:  

(1) Numerous homography estimate algorithms are 

specifically tailored for static resolutions, 

although real-world applications frequently 

necessitate significantly more adaptable 

resolutions. Applying pre-trained models to 

images with varying resolutions might result in a 

significant decrease in performance. This is 

because the images need to be resized to meet the 

required resolution, which can negatively impact 

the model's performance.  

(2) In contrast to flow optical estimation, which 

requires tiny movements between images, 

estimation homography frequently involves 

images with relatively low overlap rates. In such 

instances, the performance of conventional 

approaches may be subpar because of their 

restricted receptive fields.  

(3) Current approaches tackle the issue of parallax or 

moving objects by training models to identify and 

discard data points that do not fit the expected 

pattern in the extractor feature [92], estimator 

[109], or cost volume [110].  Nevertheless, it 

remains ambiguous as to whether stage is more 

suitable for the rejection of outliers.  

Given the problems we have discussed, we may 

identify some prospective study topics for future 

endeavors:  

(1) To address the initial obstacle, we can develop 

diverse tactics to improve the ability to handle 

different levels of resolution. This can be 

achieved by techniques including augmenting 

data relevant to resolution and continuously 

learning from several datasets that have varying 

resolutions. In addition, we have the option to 

create a parameterization form that does not 

require a resolution. The perspective field [96] is 

an exemplary example that displays the 

homography by using dense correspondences by 

same resolution as the import images. However, 

the use of RANSAC as the post-processing 

strategy adds additional computational cost, 

particularly when dealing with many 

correspondences. Hence, it is imperative to 

investigate a parameterization form that is both 

resolution-free and efficient.  

(2)  To improve the performance when there is a 

low-rate overlap, the key idea is to enlarge the 

networks receptive fields. cross-attention module 

of the transformer effectively utilizes the long-

range correlation to remove any inherent bias 

towards short-range connections. Alternatively, 

we can utilize advantageous forms of cost 

volume to incorporate feature correlation [102].  

(3) Since there is no interaction between various 

picture features in the feature extractor, it is 

logical to conclude that outlier rejection should 

take place after feature extraction.  

Identifying outliers within a single image is not 

feasible since relying solely on depth as an outlier cue 

is insufficient. Images taken by cameras that are only 

rotated do not have any parallax outliers. 

Furthermore, it becomes logical to acquire the skill of 

identifying and excluding outliers by merging both 

correlation (global and local), akin to the 

understanding of RANSAC.  

6. Cross Sensor Model 
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Camera Multi sensor calibration is a process that 

determines the inherent and external characteristics 

of several sensors, such as cameras, LiDAR's, and 

IMUs. This guarantees the synchronization of data 

from several sensors. and recorded in a shared 

coordinate system, enabling them to be combined for 

a more precise depiction of the surroundings. Precise 

calibration of several sensors is essential for 

applications such as autonomous driving and 

robotics, where dependable sensor fusion is required 

for safe and efficient functioning.  

In this section, we primarily examine the existing 

research on learning-based camera-LiDAR 

calibration. This involves predicting the 6-DoF body 

rigid transformation between the 3D-LiDAR and the 

camera, without the need for any specific features or 

landmarks during the implementation. Like the 

process of calibration in other camera systems, this 

study topic can also be categorized into two 

categories of solutions: solutions flow-based and 

solutions regression-based. However, Following the 

matching notion in camera calibration-LiDAR, we 

divide the extant learning-based research into three 

categories: object/key point-level solutions, 

semantics-level solutions, and pixel-level solutions. 

6.1 Solution at the Pixel-Level  

Initial deep learning method for camera -LiDAR 

calibration, known as Reg-Net [111], employed 

Convolutional Neural Networks (CNNs) to integrate 

feature extraction, feature matching, and global 

regression to deduce the 6-DoF extrinsic parameters. 

The system independently analyzed the RGB and 

LiDAR depth map, and then split the data into two 

parallel network streams. Next, a dedicated 

correlation layer was suggested to convolve the 

combined RGB and LiDAR characteristics into a 

unified representation. Following the process of 

feature matching, the integration of global 

information and regression parameter was 

accomplished using two fully layers connected, 

employing a Euclidean loss function. Inspired by this 

research, subsequent studies have advanced the field 

of camera -LiDAR calibration by focusing on various 

aspects such as geometric constraint [112], loss 

design [113], extraction feature, fusion feature, 

matching feature [113,115], and calibration 

representation [116], [62].  

 

Fig. 10 Network architecture of Calib-Net [112]. 
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Fig. 10 demonstrates the development of Calib-

Net [112], a network that predicts calibration 

parameters to enhance the geometric and photometric 

consistency of images and point clouds. This is 

accomplished by employing 3D Spatial Transformers 

[117] to address the fundamental physical issue. The 

CalibR CNN [118] method employed a synthetic 

view and an epipolar geometry constraint to enhance 

the calibration model. This enabled them to quantify 

the discrepancies in both the photometric and 

geometric characteristics between successive frames. 

In addition, they conducted research on the utilization 

of LSTM network for acquiring temporal information 

in camera-LiDAR calibration, which was an 

innovative methodology. The camera calibration - 

LiDAR output space is represented in three 

dimensions using the Special Euclidean Groups 

(SE(3)), which is distinct from the standard Euclidean 

space. To tackle this issue, RGGNet [113] integrated 

Riemannian geometry constraints into the loss 

function. More precisely, the calibration network was 

optimized using a SE (3) geodesic distance that 

employed left-invariant Riemannian metrics.  

LCCNet [57] employed the cost volume layer to 

acquire information regarding the correlation 

between the image and depth that has been modified 

by the point-cloud. Fusion-Net [119] employed 

Point-Net [120] to directly extract characteristics 

from a 3D point-cloud, as the depth map does not 

consider the three-dimensional geometric 

arrangement of the point-cloud. Subsequently, a 

methodology called feature fusion with Ball-Query  

and an attention strategy was devised to effectively 

merge the attributes of photos and point clouds. 

CFNet originally introduced the calibration pipeline 

for the aim of calibrating cameras and LiDAR 

sensors. This flow quantifies the difference between 

the placements of the initially projected 2D points 

and the true ground truth. Unlike explicitly 

anticipating extrinsic factors, the network's 

comprehension of the fundamental geometric 

restriction was improved by acquiring knowledge 

about the calibration flow. To achieve precise 2D and 

3D correspondences, CFNet [90] 

Corrected the initially projected locations by 

using the expected calibration flow. Later, the 

Efficient-Perspective-n-Point (EPnP) technique was 

employed to calculate the final extrinsic parameters 

using the RANSAC method. DXQNet [86] 

introduced a probabilistic model to the camera 

calibration flow - LiDAR to address the non-

differentiability issue in RANSAC. This model 

assesses the level of uncertainty to determine the 

correctness of the camera data - LiDAR association. 

Later, a posture estimate module with the ability to 

distinguish was created to solve the problem of 

determining extrinsic parameters. This module 

efficiently transmits the external mistake to the flow-

prediction network. 

6.2 Semantics Solution level 

 Deep neural networks are capable of effectively 

learning and representing semantic characteristics. 

Optimal calibration ensures to precisely synchronize 

the identical occurrence in various sensors. To 

achieve this objective, several studies [121, 120 ,122] 

have investigated the use of semantic information to 

assist in the calibration of camera-LiDAR systems. 

The SOIC [122] method calibrates and converts the 

initialization issues to PnP problem of semantic 

centroids by utilizing semantic knowledge.  

A matching constraint cost function was 

introduced based on the semantic components, as the 

3D semantic centroids of the point cloud and the 2D 

semantic centroids of the picture cannot align 

perfectly. SSI-Calib [120] redesigned the calibration 

process by transforming it into an optimization issue. 

They introduced a new quality metric that relies on 

semantic properties. Subsequently, a non-monotonic 

sub-gradient ascent technique was introduced to 

compute the parameters of calibration. Other studies 

employed pre-existing segmentation networks for 

both point cloud and image data. They then enhanced 

the accuracy of the calibration parameters by 

minimizing the loss of semantic alignment in both 

single-direction and bi-directional approaches 

[51,121].  

6.3 Solution at the Object/Key point Level  

 ATOP developed a Cross-Modal Matching Network 

called Attention-based Object-Level Matching 

Network. This network was meant to investigate the 

overlapping field of view (FoV) between camera and 
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LiDAR. Its purpose was to assist in producing 

correspondences between 2D and 3D objects at the 

object level. The YOLOv4 and Point Pillar [116, 123] 

algorithms successfully identified 2D and 3D object 

proposals. Subsequently, two consecutive (PSO 

based) algorithms were developed to calculate the 

parameters of calibration extrinsic during the 

optimization phase. The RKGCNet [119] utilized the 

deep declarative network (DDN) to integrate a 

regular neural layer with a PnP solver into a single 

network. This approach formulated the challenge of 

2D-3D data association and posture prediction as 

bilevel optimization problem. Thus, it is possible to 

utilize both the convolutional layer's ability to extract 

features and the traditional geometric solution. 

Microsoft's human key point extraction [124] was 

utilized to identify the key points that match in both 

2D and 3D. In addition, RKGCNet [125] included a 

weight layer that can be learned and is responsible for 

identifying the key points used in the solver. This 

allows for entire pipeline to be training in a seamless 

manner from start to finish. 

6.4 Analysis and conversation 

6.4.1 Methodology Overview  

Current approach may be characterized based-on the 

premise of constructing (2D and 3D) matches, 

specifically using a calibration target. To summaries, 

the majority of (pixel level solutions) employed end-

to-end frame-work to tackle task. Although these 

techniques achieved satisfactory results on dataset, 

their ability to generalize is restricted. Methods based 

on (semantics-level) and key point-level approaches, 

derived from classical calibration, demonstrated 

satisfactory performance and generalization 

capabilities. Nevertheless, their dependence on the 

excellence of fore-end feature extraction was 

substantial.  

6.4.2 Current Direction of Research  

(1) The complexity of network architecture is 

increasing due to the use of various structures for 

feature extraction, matching, and fusion. Present 

techniques utilize approaches such as extraction 

of multi scale features, cost volume 

establishment, cross modal interaction, and 

fusion confidence-guided.  

(2) Conducting a direct regression of the 6-DoF 

parameters results in limited ability to generalize. 

To address this issue, intermediary 

representations such as calibration flow have 

been implemented. In addition, the calibration 

flow has the capability to handle non-rigid 

transformations that are frequently encountered 

in real-world applications. 

(3) Conventional approaches necessitate settings yet 

possess meticulously planned tactics. 

Researchers have explored a combination of 

geometric solution algorithms and learning 

methods to achieve a balance between accuracy 

and generalization.  

6.4.3 Subsequent Endeavors  

(1) Camera calibration (LiDAR) approaches 

commonly depend on dataset such as KITTI, 

which offer parameters of initial extrinsic. To 

generate a de-calibration dataset, researchers 

introduce noise changes to initial extrinsic. 

However, this method relies on the assumption of 

a camera-LiDAR system with a stable position 

and miscalibration. Collecting large-scale actual 

data with ground truth extrinsic might be 

problematic due to the variation in the camera-

LiDAR relative posture in real-world 

applications. A potential method to tackle this 

difficulty is to generate synthetic camera-LiDAR 

data using simulation systems.  

(2) In order to maximize the effectiveness of both 

networks and traditional solutions, a more 

condensed strategy is required. Existing 

techniques mostly employ network feature 

extractors, leading to non(end-to-end) pipelines 

that lack sufficient adjustments for feature 

extraction calibration. A(DDN) deep-

declarative-networks is highly promising 

technology that enables the differentiation of the 

entire pipeline. DDN can optimize the 

combination of traditional and learning 

approaches. 

 (3) The primary focus of camera-LiDAR calibration 

is the alignment of 2D images with 3D point 

clouds. To accomplish this, point cloud typically 

converted into a depth-image. Nevertheless, 

significant discrepancies in extrinsic simulation 

might lead to a loss of detail. Given the 

significant advancements in cross modals and 

Transformer approaches, we propose utilizing 
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Transformer directly acquire the characteristics 

of both images and point clouds in a unified 

process. This approach is expected to enhance the 

accuracy of matching 2D and 3D data.  

 
Fig. 11 Overview of our collected benchmark dataset, which covers all models reviewed in this paper, in this dataset, the 

image and video derive from diverse cameras under different environments. 

7. Benchmark 

Due to the absence of a standardized and widely 

accepted benchmark for learning-based calibration, 

we have created a dataset that can be used as a 

foundation for evaluating generalization capabilities. 

This collection consists of photos and videos 

acquired by various cameras in a range of scenarios, 

including both simulated surroundings and real-

world settings. In addition, this dataset includes the 

ground truth of camera calibration, parameter labels, 

and visual hints under various situations. Fig. 11 

displays a selection of samples from our obtained 

dataset. 

Standard Model: We obtained 300 high-resolution 

images from the Internet, taken by well-known digital 

camera brands such as Canon, Nikon, Sigma, Sony, 

Olympus, and others. We provide precise focal 

lengths of the lenses for each image and incorporated 

a wide array of subjects, encompassing landscapes, 

portraiture, wildlife, architecture, and more. The 

focal lengths span from 4.5 mm to 600 mm. 

Distortion Model: We have developed an extensive 

dataset specifically for the distortion camera model, 

with a specific emphasis on wide-angle cameras.  

The dataset consists of three subcategories. The 

first dataset is synthetic, created through a generation 

process, often employing the quartic polynomial 

model. The collection comprises both circular and 

rectangular constructions, consisting of 1,000 pairs of 

distorted and rectified images. The second 

subcategory comprises data obtained in real-world 

conditions, taken from unprocessed calibration data 

for approximately 40 different wide-angle cameras. 

Each set of calibration data includes the intrinsic 

parameters, extrinsic parameters, and distortion 

factors. Ultimately, we utilized a vehicle equipped 

with various cameras to record video streams. The 

scenes encompass a variety of indoor and outdoor 

settings, capturing footage throughout both daytime 

and nighttime. 

Cross View Model: We randomly picked 500 

samples (testing) from each of the four exemplary 

datasets (Google Map [126], MSCOCO [88], Google 

Earth [70], CAHomo [92] to construct a dataset for 

the cross-view model. It encompasses a variety of 
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situations: MS-COCO delivers naturally occurring 

synthetic data, Google Earth provides aerial synthetic 

data, and Google Maps offers multi-modal data. 

Parallax does not affect these datasets, whereas 

CAHomo offers real-world data with non-planar 

situations. To provide a consistent dataset, we 

transformed all photos into a standardized format and 

documented the corresponding points that aligned 

across two perspectives. For MS-COCO, Google 

Map, and Google Earth, we utilized the four vertices 

of the images as points of correspondence. In 

California, we identified six corresponding important 

locations situated on the same plane. 

Multi-sensor Model: We obtained RGB and point 

cloud data from the following sources: NuScenes 

[103], Apollo [127], DAIR V3X [126], ONCE [128], 

KUCL [109, 51,108], and KITTI [130]. Each 

category has around 300 data pairs with calibration 

parameters. The datasets were collected in many 

nations to ensure sufficient diversity. Every dataset is 

equipped with a distinct sensor configuration, 

capturing camera-LiDAR data that differs in terms of 

picture resolution, LiDAR scan pattern, and the 

relative position of the camera and LiDAR. The 

image resolution varies from 2448x2048 to 

1242x375, while LiDAR sensors are manufactured 

by Hesai and Velodyne, offering options with 16, 32, 

40, 64, and 128 beams. The dataset comprises not 

only regular multi-view photos from the 

surroundings but also multi-view data with a modest 

baseline. Additionally, we introduced a random 

perturbation of approximately 20 degrees of rotation 

and 1.5 meters of translation, following the standard 

parameters [111], to simulate collision and vibration. 

8. Directions of Future Researches  

Camera calibration is a basic and complex area of 

research. Based on the technical assessments and 

limitation analysis, it can be deduced that there is still 

potential for enhancement. using deep learning 

techniques. The subsequent sections, namely Section 

3 to Section 6, delve into the detailed plans and 

initiatives for each model soon. In this part, we 

propose broader avenues for future research. 

8.1 Sequences  

Most studies concentrate on the process of calibrating 

a solitary image. Nevertheless, the valuable 

information regarding calibration that is provided by 

the strong correlation between sequences has been 

disregarded. Acquiring knowledge of the 

spatiotemporal correlation allows the network to 

understand the relationship between space and time, 

which is consistent with concepts of classical 

calibration. By applies existing calibration methods 

directly to first frame, then transferring the calibrated 

objectives into next frame is simple and direct 

approach. Nevertheless, there are no techniques can 

flawlessly to calibrate each uncalibrated inputs, and 

inaccuracy in calibration will endure throughout the 

entire process. An alternative approach is to perform 

simultaneous calibration on all frames. Nevertheless, 

the accuracy of learning-based algorithms in 

calibration is greatly dependent on the semantic 

characteristics of the image. Consequently, calibrated 

sequences may have unstable jitter effects when there 

are tiny changes in the scenes. Therefore, 

investigating video stabilization for the purpose of 

sequence calibration is a compelling avenue for 

future research.  

8.2 Learning Objective  

Neural networks may find it difficult to learn 

conventional calibration objectives because of their 

implicit relationship to picture attributes. Some 

studies have created innovative learning goals that 

substitute traditional calibration objectives, offering 

neural networks with user-friendly representations 

for the purpose of achieving this objective. In 

addition, intermediary geometric representations 

have been introduced to connect picture attributes 

and calibration goals. These representations include 

reflective amplitude map [131], normal flow [132], 

rectification flow [133], and surface geometry [79], 

among others. When considering development of 

community in the future, we believe that still 

significant possibility to creating more clear and 

logical learning goals for camera objectives 

calibration.  

8.3 Initial-training  

Utilizing pre training to Image-Net [134] become 

prevalent approach in the field of deep-learning. 

Nevertheless, recent research [135] has indicated that 
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this method offers limited advantages for some 

calibration jobs, such as wide-angle calibration. The 

existence of two primary factors contributes to this 

phenomenon: the data and task gaps. The Image-Net 

datasets exclusively consist of undistorted 

perspective photos, rendering the initial weights of 

neural network inconsequential to distortion model.  

In addition, He et-al. [136] showed the 

advantages of an Image-Net pre-training are limited 

at the final job relies more on localization. 

Consequently, the accuracy of estimating extrinsic 

may be affected by this discrepancy in tasks. In 

addition, the practice of pre-training using more than 

one image and modality has not been extensively 

studied in the relevant sector. Developing a tailored 

pre training technique for learning based calibration 

is a compelling research topic. The Implicit Unified 

Model has a rating of 8.4. 

Deep learning-based cameras calibration method 

utilize conventional parametric cameras model, 

which do not possess the adaptability to accurately 

accommodate intricate scenarios. Non-parametric 

camera models establish a relationship between each 

pixel and its corresponding 3D observation ray, 

thereby surpassing the constraints of parametric 

models. Nevertheless, they necessitate precise 

calibration targets and are more intricate when it 

comes to projection un distortion, and unprotection. 

The deep learning techniques demonstrate promise 

for calibration problems, indicating that it may be 

worthwhile to reconsider and potentially replace 

parametric models with nonparametric models in 

future. In addition, they enable implicit and unified 

camera calibration by using pixel-level regression, 

which eliminates the need for explicit feature 

extraction and geometry solution. This approach may 

be used to all camera types. Self-calibration refers to 

the process of automatically determining the intrinsic 

parameters of a camera, such as non-linear 

distortions, without the need for calibration targets. 

NeRF, a technique developed for generic cameras, 

aims to accomplish this by learning depth and ego-

motion via end-to-end pipelines. The unified and 

implicit cameras model has the potential to enhance 

learning-based algorithms and be included into 

subsequent tasks of 3D vision. 

 

Table 1: Analysis of the related studies on Multi-cameras Calibration System 

Method Year 
Public

ation 
Objective Network 

Loss 

Function 
Dataset Evaluation Learning Platform 

Simula

tion 

Deep3D [94] 2015 ICCV 
Supervise

d 
AlexNet L1 loss 

ChairsSD

Hom 
Accuracy SL Caffe - 

Deep MVS 

[33] 
2016 ECCV 

Supervise

d 
VGG-Net L2 loss YUD Accuracy SL Caffe - 

SfM-Net [66] 2017 CVPR Self-Sup CNNs L1 loss KITTI PSNR, SSIM SL 
TensorFlo

w 
✓ 

Mono Depth 

[70] 
2018 CVPR Self-Sup ResNet 

Cross-

entropy 

loss 

KITTI 
RMSE, 

PSNR 
SL PyTorch ✓ 

Deep 

Homography 

[17] 

2018 CVPR 
Supervise

d 
ResNet 

Binary 

cross-

entropy 

loss 

MS-

COCO 
PSNR, SSIM SL 

TensorFlo

w 
✓ 

Deep TAM 

[35] 
2018 ECCV 

Supervise

d 
CNNs L1 loss TartanAir 

RMSE, 

MAE 
SL PyTorch ✓ 

Depth GAN 

[108] 
2018 CVPR 

Supervise

d 
GAN 

Cross-

entropy 

loss 

KITTI PSNR, SSIM SL 
TensorFlo

w 
✓ 

DPS Net [9] 2019 CVPR 
Supervise

d 
CNNs 

Cross-

entropy 

loss 

SUN3D PSNR, SSIM SL PyTorch - 

Homography 

Net [29] 
2019 ICCV 

Supervise

d 
CNNs L2 loss 

MS-

COCO 

RMSE, 

PSNR 
SL 

TensorFlo

w 
✓ 

Depth Net++ 

[78] 
2019 ICCV Self-Sup ResNet 

Smooth 

L1 loss 
KITTI 

RMSE, 

PSNR 
SL PyTorch ✓ 

DGAN-Net 

[115] 
2019 ICCV 

Supervise

d 
GAN GAN loss KITTI PSNR, SSIM SL 

TensorFlo

w 
✓ 

DepthNet [2] 2020 ECCV Self-Sup ResNet50 
Smoothed 

L1 loss 
KITTI AUC UL PyTorch ✓ 
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PHomography

Net [42] 
2020 ECCV 

Supervise

d 
CNNs 

Smooth 

L1 loss 
KITTI 

RMSE, 

PSNR 
SL PyTorch ✓ 

RGBD-GAN 

[122] 
2020 ECCV Self-Sup GAN L1 loss KITTI PSNR, SSIM SL 

TensorFlo

w 
✓ 

R-DepthNet 

[5] 
2021 CVPR 

Supervise

d 
CNNs 

Cross-

entropy 

loss 

SUN3D 

PSNR, 

SSIM, 

RMSE 

SL PyTorch - 

RSHomograp

hyNet [55] 
2021 CVPR 

Supervise

d 
CNNs 

Smoothed 

L2 loss 
SUN3D 

PSNR, 

SSIM, MAE 
SL PyTorch ✓ 

R-

DepthNet++ 

[85] 

2020 ECCV Self-Sup ResNet L2 loss KITTI 
RMSE, 

PSNR 
SL PyTorch ✓ 

D-

DepthNet++ 

[92] 

2021 CVPR Self-Sup CNNs GAN loss KITTI 
RMSE, 

PSNR 
SL PyTorch ✓ 

Multi-

DepthGAN 

[129] 

2021 CVPR 
Supervise

d 
GAN 

Smooth 

L1 loss 
KITTI PSNR, SSIM SL 

TensorFlo

w 
✓ 

GHomograph

yNet [61] 
2022 CVPR 

Supervise

d 
CNNs GAN loss KITTI 

PSNR, 

SSIM, MAE 
SL PyTorch ✓ 

G-

DepthNet++ 

[99] 

2022 CVPR Self-Sup CNNs 

Cross-

entropy 

loss 

KITTI 
RMSE, 

PSNR 
SL PyTorch ✓ 

SelfDepthGA

N [136] 
2022 CVPR Self-Sup GAN GAN loss KITTI PSNR, SSIM SL 

TensorFlo

w 
✓ 

MC-DepthNet 

[45] 
2022 CVPR 

Supervise

d 
CNNs 

Smooth 

L1 loss 
KITTI 

PSNR, 

SSIM, MAE 
SL PyTorch ✓ 

DepthNetX 

[150] 
2023 CVPR 

Supervise

d 
ResNet101 

Smooth 

L1 loss 

NYU 

Depth v2 

PSNR, 

SSIM, MAE 
SL PyTorch ✓ 

DepthEstNet 

[155] 
2023 ECCV Self-Sup DenseNet 

Cross-

entropy 

loss 

KITTI, 

NYU 

Depth v2 

RMSE, 

PSNR, SSIM 
SL 

TensorFlo

w 
✓ 

DepthEstNet 

[155] 
2023 ECCV Self-Sup DenseNet 

Cross-

entropy 

loss 

KITTI, 

NYU 

Depth v2 

RMSE, 

PSNR, SSIM 
SL 

TensorFlo

w 
✓ 

MonoDepth3

D [160] 
2024 CVPR Self-Sup 

EfficientNe

t 
L1 loss 

TartanAir, 

NYU 

Depth v2 

PSNR, SSIM UL PyTorch ✓ 

GANDepth 

[165] 
2024 ICCV Self-Sup GAN GAN loss 

KITTI, 

NYU 

Depth v2 

RMSE, 

PSNR 
SL 

TensorFlo

w 
✓ 

HybridDepth

Net [170] 
2024 CVPR 

Supervise

d 
HybridNet 

Smooth 

L1 loss 

KITTI, 

NYU 

Depth v2 

PSNR, 

SSIM, MAE 
SL PyTorch ✓ 

GANDepth 

[165] 
2024 ICCV Self-Sup GAN GAN loss 

KITTI, 

NYU 

Depth v2 

RMSE, 

PSNR 
SL 

TensorFlo

w 
✓ 

HybridDepth

Net [170] 
2024 CVPR 

Supervise

d 
HybridNet 

Smooth 

L1 loss 

KITTI, 

NYU 

Depth v2 

PSNR, 

SSIM, MAE 
SL PyTorch ✓ 

 

9. Analysis and Discussion  

In this study, the Advancements and Challenges in 

Camera Calibration System using deep learning 

techniques have been illustrated and discussed in 

details. Several studies have been well established in 

the felid of camera calibration. Table 1 illustrates and 

discusses the most recent researches on this filed on 

study.   

10. Conclusion 

This study provides a thorough examination of the 

current advancements in camera calibration using 

deep learning techniques. The scope of our 

assessment includes traditional camera models, 

categorized learning paradigms and tactics, 

comprehensive evaluations of the latest 

methodology, a publicly available benchmark, and 

suggestions for future research. To highlight the 

progression of the development processes and 

establish the relationships between different works, 

we offer a detailed classification system that 
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organizes literature by taking into account both 

camera models and applications. Furthermore, each 

category provides a comprehensive analysis of the 

linkages, strengths, distinctions, and limitations. An 

open-source repository will consistently update with 

fresh work and dataset. We anticipate that this survey 

will facilitate future investigations to this domain.  
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