
Bilad Alrafidain Journal for Engineering Science and Technology 

https://doi.org/10.56990/bajest/2025.040113 
ISSN: 2073-9524 

Pages:155-169 

 

155 

Behavioral Analysis of Domain Name System (DNS) Attacks and the 

Development of Innovative Countermeasures Using the Random 

Forest Algorithm: AI-Based Systematic Integration 

Alaa Abdul Ridha Abdulqader Al-Karkhi1  
1Department of Computer Science, Arts, Sciences & Technology University in Lebanon 

Beirut, Lebanon 

alaaraza88@gmail.com   

 

Abstract 

The Domain Name System (DNS) is a fundamental component of the Internet's infrastructure and has become 

a frequent target of major cyberattacks, such as DNS Spoofing, DNS Tunneling, and DNS Amplification 

Attacks. Among these, DNS Amplification Attacks are the most dangerous, as they exploit misconfigured 

DNS servers to amplify traffic and overwhelm the target with massive amounts of data. These attacks are 

particularly challenging for conventional detection techniques to analyze and mitigate.  This research proposes 

an enhanced real-time DNS threat detection model based on the Random Forest algorithm. By utilizing 

attributes such as query type, packet size, and response time, the model achieves a 98% accuracy rate in 

distinguishing between normal and anomalous traffic. Additionally, false positives are reduced to 5%, and 

the response time is improved by 120 milliseconds compared to previously implemented solutions. The 

success of these network classification models consistently demonstrates the effectiveness of ensemble 

methods, particularly in addressing DNS threats.  Future work will focus on advancing detection systems by 

developing hybrid models and incorporating signal processing techniques that leverage real-time analysis. 

This approach aims to ensure that newly emerging cyber threats are effectively identified and mitigated. 

Keywords: Random Forest Algorithm, Machine Learning, Real-Time Detection, AI-Driven Solution, Hybrid 

Models, DNS Amplification Attack 

Article history: Received: 12 Dec 2024; Accepted: 24 Feb 2025; Published: 15 Mar 2025 

This article is open-access under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction 

The Domain Name System (DNS) is increasingly 

vulnerable to advanced attacks, with DNS 

Amplification Attacks being among the most severe. 

These attacks exploit open DNS resolvers to 

transform regular requests into massive traffic floods, 

impacting the target network and potentially many 

others. Analyzing DNS traffic behavior is crucial for 

detecting harmful activity patterns [1]. Hackers often 

exploit DNS vulnerabilities to insert malicious code 

 
 Corresponding author: alaaraza88@gmail.com  

 

and redirect users to fake websites.  Cybersecurity 

researchers identify unusual activity by examining 

the timing, origins, and structure of DNS queries, 

enabling the development of automated detection 

systems. Pattern analysis plays a critical role in 

quickly identifying threats and is highly effective for 

network defense. A thorough review of DNS data 

serves as the foundation for flagging suspicious 

behavior [2]. 

The rise in DNS attacks necessitates the 

advancement of countermeasures to control and 

mailto:alaaraza88@gmail.com
http://creativecommons.org/licenses/by/4.0/
mailto:alaaraza88@gmail.com


Bilad Alrafidain Journal for Engineering Science and Technology 

https://doi.org/10.56990/bajest/2025.040113 
ISSN: 2073-9524 

Pages:155-169 

 

156 

prevent such threats. Various technologies have been 

proposed, including the development of secure DNS 

protocols, improved authentication mechanisms, and 

real-time monitoring systems to detect abnormal 

activities. Anomaly detection plays a crucial role in 

identifying attacks early and providing instant real-

time responses. Examples of abnormal behaviors 

include an increase in the number of DNS requests or 

unusual patterns in query behavior.  Previous 

detection approaches have been limited in their 

ability to handle such attacks due to the complexities 

involved. However, advancements in machine 

learning tools and technologies have significantly 

improved the identification and mitigation of DNS 

attacks [3]. 

This research focuses on analyzing the behavior 

of DNS Amplification Attacks and proposes the 

Random Forest algorithm as a real-time detection 

method. The proposed approach enhances the 

detection rate, increases the required signal-to-noise 

ratio, and reduces response time, making it an 

effective and efficient defense against this significant 

threat.  The remainder of this paper is organized as 

follows: Section 2 provides a comprehensive 

literature review, including the history of DNS 

attacks and the methods used to detect them. Section 

3 discusses the methodology of the proposed system. 

Section 4 presents the results and discussion, and 

finally, Section 5 concludes the study and outlines 

future work. 

2. Literature Review 

DNS Amplification Attacks are among the most 

dangerous threats faced by internet systems today. 

These attacks exploit open DNS resolvers to amplify 

small queries into massive traffic floods that 

overwhelm targets. The following subsection reviews 

the current literature on DNS attack detection, 

including traditional approaches, machine learning 

techniques, and other methods. 

2.1 Traditional Detection Methods 

Authors have also employed signature-based 

detection methods, achieving an 85% success rate 

[1]. However, such methods are ineffective when 

adapting to new attack patterns. Similarly, heuristic 

filters developed improved accuracy to 87% but 

proved inadequate in handling large traffic volumes 

[2]. Other studies have explored encryption 

methodologies for DNS, including DNS over HTTPS 

(DoH) and DNS over Transport Layer Security 

(DoT). While both approaches were found to enhance 

DNS privacy, the authors highlighted that none of 

these protocols can fully mitigate DNS amplification 

attacks, as noted in [3]. DNSSEC provides 

authentication for DNS responses but is unable to 

counter traffic-based attacks such as amplification 

attacks, according to [4]. 

2.2 Machine Learning Trends 

Today, it is impossible to envision DNS attack 

detection without machine learning. For instance, the 

following work utilized supervised learning models 

to detect DNS cache poisoning with high 

adaptability; however, this method required many 

labeled datasets [5]. Some studies have focused on 

combining models and their scalability. For example, 

employed both rule-based and machine learning 

models. Deep learning techniques, a subset of 

machine learning, have also been applied [6]. As 

demonstrated by two works, deep neural networks 

have been used for DNS traffic analysis, achieving 

high levels of accuracy. However, these methods are 

not ideally suited for real-time applications due to the 

computational overhead involved [7] and [8]. 

Dedicated their research to reducing response time in 

AI-based systems, a critical factor in preventing 

amplification attacks in live environments [9]. 

2.3 Emerging Technologies 

Over the years, blockchain has proven to be a viable 

solution for DNS security. For instance, that 

blockchain can be applied to protect DNS records 

from manipulation [10]. Similarly, combined block 

chain with machine learning to develop effective 

defense mechanisms against amplification attacks 

[11]. However, using blockchain as an additional 

layer introduces latency, which remains a drawback. 

Other studies have explored time series modeling; for 

example, they demonstrated how learning traffic 

patterns can help identify ongoing amplification 

attacks [12]. As noted, real-time detection methods 

are critical [13].  The next work focused on AI-based 

real-time approaches, achieving significant 

improvements in detection rates [14]. There are many 



Bilad Alrafidain Journal for Engineering Science and Technology 

https://doi.org/10.56990/bajest/2025.040113 
ISSN: 2073-9524 

Pages:155-169 

 

157 

mechanisms that employed to del with DNS attack, 

bellow presents the most common of them: 

• Automated Threat Analysis: in proposed systems 

that real-time pattern recognition, to identify 

DNS inconsistencies [15]. 

• Scalable Architectures: Analyzed distributed 

machine-learning systems for large-scale DNS 

attack detection [16].  

• AI Integration: Discuss where the authors apply 

and elaborate on the possibilities of ensemble 

methods like Random Forest to minimize false 

positives [17]. 

• Traffic Simulation: It has only made simulation 

analysis to analyze the effect of amplification 

attacks on IOT networks [18]. 

• Cloud-Based Solutions: Less cloud-based 

defense mechanisms were analyzed by providing 

the possibility to reach the actual DNS security 

on a large level [19]. 

• Feature Engineering: highlighted the issue of 

feature selection methods to enhance the 

accuracy of the results of machine learning in 

DNS attack detection [20]. 

• Adaptive Models: In a paper, the authors 

discussed how to address the changing nature of 

attack patterns through reinforcement learning 

solutions [21]. 

• Lightweight Systems: proposed creating lean 

artificial intelligence systems for small device 

applications [22]. 

• Real-Time Monitoring: We were mainly 

concerned with extending the use of probes such 

as Wire shark in maintaining AI models trained 

for live packet traffic analysis [23]. 

Anomaly Detection: DNS traffic analysis was 

investigated using unsupervised learning [24]. 

Comparative Insights in the work have presented 

annotated literature on the DNS attack detection 

mechanisms and how the capability has changed 

from a more fixed mode to an AI-empowered mode 

[25].  

Highlighted applying machine learning in 

streaming data analysis [26]. Some of the other works 

are aimed at enhancing the detection accuracy 

without compromising on the required computations 

[27] and [28]. 

 

2.5 Summary of Prior Research 

In analyzing the various methods of detecting DNS 

attacks, an important observation can be seen wherein 

the progression of the system in approaching DNS-

threatened websites changes from simple rule-based 

systems to more complex AI techniques. In the case 

of threats that are known, conventional methods 

continue to be applicable but AI and new age tools 

add to flexibility and expansibility. This research 

builds on the benefits of Random Forest: higher 

accuracy of 98%, fewer false positives at 5%, and 

real-time, thus solving the issues seen in previous 

research 

3. Methodology 

Fig. 1 illustrates the main steps of our proposed 

method. The Random Forest algorithm detects DNS 

Amplification Attacks in real time through the 

following steps: 

• Start: DNS traffic is accepted for processing. 

• Input DNS Traffic: Basic traffic parameters, 

such as query type, packet size, and response 

time, are gathered for comparison. 

• Preprocess Data: The dataset is cleaned by 

removing missing and unnecessary variables, 

encoding categorical variables into the 

numerical format, and normalizing numerical 

variables. 

• Feature Selection: Specific parameters (e.g., 

query type, packet size, response time) are 

selected to enable faster and more accurate 

detection. 

• Train Random Forest Model: When using the 

‘Balanced’ parameter, it is recommended to 

use 100 decision trees with a maximum depth 

of 10. 

• Analyze Real-Time Traffic: The trained model 

is used to identify outliers in real-time traffic. 

• Classification Output: Traffic is categorized as 

either normal or malicious using ensemble 

voting. 

• Generate Alert: Alert notifications are issued 

for detected malicious traffic patterns. 

• End: This completes the classification and 

notification process.  

The described flow demonstrates that a linear 

organizational structure enables accurate and 

efficient detection through a streamlined workflow. 



Bilad Alrafidain Journal for Engineering Science and Technology 

https://doi.org/10.56990/bajest/2025.040113 
ISSN: 2073-9524 

Pages:155-169 

 

158 

 

Fig. 1 Proposed system architecture 

3.1 Data Collection 

Fig. 2 illustrates the main steps of data preprocessing. 

The initial stage of the proposed methodology 

involves the collection of DNS traffic data, which is 

required for training and evaluating the detection 

models. In this study, the dataset contains both 

normal and malicious DNS queries, obtained from a 

public DNS traffic repository, a real network 

environment, and emulated attack techniques. The 

dataset includes the following features: 

• Timestamp: The starting time when the DNS 

query was initiated. 

• Query Type: The type of DNS query, such as 

A, AAAA, CNAME, MX, and others. 

• Response Time: The duration required for the 

DNS server to respond to the query. 

• Query Size: The size of the DNS query packet. 

• Response Size: The amount of data sent by the 

server in response to a client’s request. 

• IP Addresses: The source and destination IP 

addresses involved in DNS traffic. 

• Domain Name: The domain name being 

queried, refers to the domain that a computer is 

attempting to resolve or is being requested to 

resolve. 

The data collected was cleaned to reduce the 

model’s feature space, retaining only the most 

relevant features.



Bilad Alrafidain Journal for Engineering Science and Technology 

https://doi.org/10.56990/bajest/2025.040113 
ISSN: 2073-9524 

Pages:155-169 

 

159 

 

Fig. 2 Data Aggregation Process 

3.2 Data Preprocessing 

Fig. 3 illustrates the main steps of data preprocessing. 

The raw DNS traffic data used in this study could not 

be directly fed into certain models in its natural form; 

it had to undergo transformations before being input 

into the machine learning model. These steps include: 

• Handling Missing Data: DNS traffic data may 

be incomplete and contain gaps, which can lead 

to incorrect predictions when used in the 

model. During this step, either the missing 

values were substituted with sensible values or 

the entire record was removed. 

• Feature Encoding: Since machine learning 

models require numerical input, categorical 

features such as query type and domain names 

were numerically encoded. Preprocessing 

methods like one-hot encoding were applied to 

convert categorical variables into binary 

format. 

• Feature Scaling: Features such as packet size, 

response time, and query frequencies may vary 

widely in magnitude. To remove skewness in 

the data and prevent certain attributes from 

disproportionately influencing predictions, 

feature scaling techniques such as Min-Max 

Scaling or Standardization were applied. 

• Data Splitting: The dataset was split into two 

parts:  

- Training Set (70%): Used to train the 

Random Forest model. 

- Testing Set (30%): Used to evaluate the 

performance of the developed model. 



Bilad Alrafidain Journal for Engineering Science and Technology 

https://doi.org/10.56990/bajest/2025.040113 
ISSN: 2073-9524 

Pages:155-169 

 

160 

 

Fig. 3: Data Preprocessing. 

3.3 Feature Selection 

To further improve the performance of the proposed 

Random Forest model, a feature selection approach 

was employed to identify the features that contribute 

most to DNS attack detection. The process involved: 

- Recursive Feature Elimination (RFE): This 

algorithm iteratively eliminates the least 

important features based on the model's 

performance, continuing until only the essential 

features remain. 

- Correlation Analysis: Strongly correlated 

features were analyzed, and either both features 

were retained with a common feature, or one 

feature was omitted. 

From the diverse features evaluated on the 

collected DNS traffic flows, the following features 

were selected as input parameters for the model: the 

type of DNS query, packet size, query rate, and 

response time. These features were found to be the 

most indicative of potential malicious DNS traffic. 

3.4 Random Forest Algorithm 

Random Forest is a type of supervised machine 

learning algorithm that uses multiple decision trees to 

analyze traffic information. Each tree in the forest 

contributes to the decision, making the model 

resistant to overfitting and highly accurate. For DNS 

attack detection, Random Forest examines the 

characteristics of traffic information and determines 

whether the traffic is normal or malicious using 

several decision trees. Fig. 4 illustrates an example of 

the Random Forest algorithm process. 

 



Bilad Alrafidain Journal for Engineering Science and Technology 

https://doi.org/10.56990/bajest/2025.040113 
ISSN: 2073-9524 

Pages:155-169 

 

161 

 

Fig. 4 Random Forest Algorithm 

3.5 Illustration Explanation: 

The illustration demonstrates how the Random Forest 

algorithm is used to monitor DNS traffic, depicted in 

a flowchart. This approach utilizes decision trees that 

consider various aspects of DNS traffic—such as the 

type of request, packet size, and response time—to 

classify the request Fig. 5 Monitor DNS traffic used 

by the Random Forest algorithm. 

- Input Traffic Features: The system first 

constructs the basic DNS traffic framework by 

collecting key attributes and features. The 

selected features include query type, packet size, 

and response time. These attributes are relevant 

because variations in them can indicate potential 

threats. For example, changes in packet 

dimensions or spikes in response time may 

signal abnormalities, pointing to a threat in the 

DNS traffic stream. 

- Decision Tree Ensemble: In the context of 

classification, Random Forest is an ensemble of 

decision trees that work independently, with 

each tree creating its classification model from 

a different subset of data. Each decision tree 

analyzes the incoming traffic to determine 

whether it appears normal or malicious, 

providing its own classification. This ensemble 

approach ensures that the system considers 

multiple perspectives, reducing the bias of 

individual trees. 

- Voting Mechanism: The predictions from each 

decision tree are combined at the end of the 

process using a majority voting system. This 

means the system marks traffic as suspicious if 

most trees detect potential malicious activity. 

However, traffic is not flagged as suspicious 

unless a significant consensus is reached, 

ensuring efficiency and reducing false positives. 

- Output and Alert System: In the final step, the 

voting mechanism triggers an alert when most 

votes classify the DNS traffic as suspicious. If 

the ensemble of trees strongly identifies the 

traffic as malicious, an alert is raised to highlight 

the traffic for further analysis or handling. This 

output and alert system provides a live response 

to dangerous DNS traffic, ensuring security 

through continuous monitoring. 

 



Bilad Alrafidain Journal for Engineering Science and Technology 

https://doi.org/10.56990/bajest/2025.040113 
ISSN: 2073-9524 

Pages:155-169 

 

162 

 

Fig. 5 Monitor DNS traffic used by the Random Forest algorithm  

Here is a detailed explanation of how the Random 

Forest model was implemented in this study:  

- Number of Trees (Estimators): In this study, the 

Random Forest was configured to execute with 

100 decision trees, balancing performance and 

computational efficiency. 

- Tree Depth (Max Depth): To prevent 

overfitting, the maximum depth of each tree was 

restricted to a specific value (e.g., maximum 

depth = 10). This ensures that the trees do not 

grow excessively large, which could lead to 

overfitting the training data and negatively 

impact the model’s performance on unseen data. 

- Bootstrap Sampling: During model 

construction, bootstrap sampling was employed, 

meaning each tree was built using a randomly 

selected subset of the training dataset.  

This approach reduces variance and increases 

the model’s reliability. 

- Voting Mechanism: Each tree in the forest 

provides an independent prediction, and a 

collective prediction is made using a simple 

voting system. This ensemble method 

minimizes the risk of overfitting compared to 

individual decision trees, ensuring better 

generalization in the context of this study. 

3.6 Model Training 

The training phase utilized processed DNS traffic 

data, which was then applied to the Random Forest 

algorithm. Benign and malicious traffic samples from 

the training dataset were used to "familiarize" the 

model with the patterns of normal and attack traffic. 

Training Algorithm: During training, each 

decision tree was constructed by categorically 

splitting the data based on selected characteristics. 

The Gini coefficient or information gain was used to 

determine the optimal node splits. 



Bilad Alrafidain Journal for Engineering Science and Technology 

https://doi.org/10.56990/bajest/2025.040113 
ISSN: 2073-9524 

Pages:155-169 

 

163 

Cross-Validation: A 10-fold cross-validation 

technique was employed during the training process 

to validate the model and prevent overfitting. 

Percentage Split: This cross-validation method 

divided the training dataset into 90% for training and 

10% for testing. To enhance the model’s reliability, 

this process was repeated 10 times. 

3.7 Performance Evaluation 

After the training phase, the test data was used to 

evaluate the effectiveness of the model in detecting 

DNS attacks. The following metric was used to assess 

the accuracy and effectiveness of the model: 

Accuracy: The traffic, containing both benign and 

malicious samples, was tested to calculate the 

percentage of correctly classified samples out of the 

total samples tested. Equation 1 represents the 

accuracy formula. 

Accuracy =
Positives (TP)+True Negatives (TN) 

Total Samples
         (1) 

Precision: The proportion of DNS traffic 

identified as potentially malicious that actually 

turned out to be malicious. High precision, which 

results in a low False Positive Rate (FPR), is crucial 

because false alarms can be costly. The following 

equation represents the precision formula. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
 True Positives (TP)

True Positives (TP)+False Positives (FP)
  (2) 

Recall (Sensitivity): The proportion of actual 

malicious DNS traffic that was accurately classified 

by the model. High recall indicates that the model 

performs well in detecting real attacks. The following 

equation represents the recall formula. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
 True Positives (TP)

True Positives (TP)+False Negatives (FN)
      (3) 

F1 Score: The harmonic means of both precision 

and recall, providing a single measure that balances 

minimizing false positives and false negatives. The 

following equation represents the F1-score formula. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
 Precision×Recall

Precision+Recall
                          (4) 

Confusion Matrix: To provide additional insight 

into the model's performance, a confusion matrix was 

used to determine the actual number of true positives 

(TP), true negatives (TN), false positives (FP), and 

false negatives (FN) produced by the model. This 

helped identify areas where the model may have 

incorrectly classified data. The confusion matrix is 

structured as in Table 1: 

Table 1: confusion matrix 

 Predicted 

Positive 

Predicted 

Negative 

Actual Positive TP FN 

Actual Negative FP TN 

 

3.8 Hyperparameter Tuning 

To further improve the model, tunable parameter 

optimization was performed using Grid Search and 

Random Search. The goal was to identify the ideal 

hyperparameters—such as the number of trees, 

maximum depth, and minimum samples per leaf—

that would maximize detection accuracy while 

minimizing computational resource usage. 

- Grid Search: A rigorous strategy that 

systematically enumerates through the entire 

hyperparameter space. 

- Random Search: A more efficient approach 

where hyperparameter values are randomly 

selected within a specified range, enabling 

faster optimization compared to brute force 

methods. 

4. Experimental Setup 

Simulation Tools for Offensive and Defensive 

Analysis of DNS Attacks Both offensive and 

defensive tools can be used to simulate attacks and 

evaluate the system's ability to counter them. 

4.1 Offensive Simulation Tools 

These tools are used to test the security system’s 

ability to detect and prevent DNS Amplification and 

other DNS-related attacks. The tools for Generating 

DNS Amplification Attacks are presented as the 

following: 

A. Low Orbit Ion Cannon (LOIC) 

An open-source tool used to generate Denial of 

Service (DDoS) attacks by flooding the server with 

massive DNS packets. Used to simulate DNS 

Reflection and Amplification attacks. It can run on 

Windows and Linux environments. 

 



Bilad Alrafidain Journal for Engineering Science and Technology 

https://doi.org/10.56990/bajest/2025.040113 
ISSN: 2073-9524 

Pages:155-169 

 

164 

B. Hping3 

An advanced tool used to create custom DNS packets 

for testing server response. Supports sending spoofed 

DNS packets to simulate DNS Amplification attacks. 

It can be used with Kali Linux. 

C. Metasploit Framework 

Contains advanced attack modules, including DNS 

Spoofing Attacks, DNS Cache Poisoning, and DNS 

Amplification Testing used in Windows and Linux 

environments for real attack simulations. 

D. Scapy 

A powerful network analysis tool that can be used to 

create DNS Tunneling packets. Used to test intrusion 

detection systems (IDS) against DNS-level attacks. 

E. DNS Flooder 

A tool designed to generate DNS Flooding attacks to 

test the system’s response. Simulates an increase in 

random query requests to the DNS server. 

F. Slow Loris 

Targets DNS servers by exploiting session 

management weaknesses, forcing them to respond 

slowly, ultimately leading to service failure. 

4.2 Defensive and Protective Tools Against DNS 

Attacks 

These tools are used to detect and prevent DNS-based 

attacks and analyze suspicious traffic patterns. DNS 

Traffic Monitoring and Analysis Tools: 

A. Wire shark 

A packet analysis tool used to inspect DNS Queries 

and Responses. Helps identify suspicious query 

patterns and analyze attack behaviors. 

B. Suricata IDS/IPS 

An Intrusion Detection and Prevention System 

(IDS/IPS) that can be configured to detect DNS 

Amplification Attacks and DNS Cache Poisoning can 

be integrated with deep learning algorithms to 

enhance pattern detection. 

C. Snort 

An Intrusion Detection System (IDS) designed to 

monitor and analyze DNS packets. Used to detect 

DNS Spoofing Attacks and DNS Tunneling. It can be 

integrated with Python Machine Learning Models to 

improve attack detection. 

 

 

D. Zeek (Bro IDS) 

A high-level security analysis system that logs 

suspicious DNS activity. Helps monitor unusual 

query spikes to detect potential DNS attacks. 

E. Fail2Ban 

A security tool used to block suspicious IP addresses 

that repeatedly send abnormal DNS queries. 

However, several DNS Protection and Security 

Enhancement Tools have been employed, Bellow is 

a summary of the most common of them: 

• DNSSEC (Domain Name System Security 

Extensions): A security protocol that prevents 

DNS Spoofing Attacks by authenticating 

responses. Can be enabled on DNS servers to 

block man-in-the-middle attacks. 

• Firewall-based Protection (IP Tables, Cisco 

ASA): Used to filter suspicious queries and 

block DNS Reflection Attacks. It can be 

configured to set rate-limiting rules for query 

requests. 

• Cloudflare DNS Security: A cloud-based 

DNS protection service powered by AI-driven 

security analytics. Detects attack behaviors in 

real-time and protects DNS servers from DDoS 

attacks. 

• Google Public DNS with DoH/DoT: Uses 

DNS over HTTPS (DoH) and DNS over TLS 

(DoT) to encrypt queries, preventing 

eavesdropping and tampering with DNS 

responses. 

To evaluate the performance of the proposed 

Random Forest-based system for detecting DNS 

Amplification Attacks, the following experimental 

setup was used: Intel Xeon processor CPU with 16 

cores (Frequency 2.5 GHz) with RAM 64 GB DDR4 

and storage 2 TB SSD. For programing, we used 

Python (v3.9) with scikit-learn, specifically for 

constructing the Random Forest model as well as for 

the feature selection step. Pandas and NumPy were 

used in data manipulation and preprocessing. 

Matplotlib and Seaborne were also used for data 

visualization. The Wire shark is used by government 

surveillance and security organizations use them to 

capture real–time DNS traffic. All system was run on 

Jupiter Notebook for writing and executing code and 

fixing mistakes in the process interactively. 



Bilad Alrafidain Journal for Engineering Science and Technology 

https://doi.org/10.56990/bajest/2025.040113 
ISSN: 2073-9524 

Pages:155-169 

 

165 

4.3 Combining Offensive and Defensive 

Simulations 

To simulate a practical DNS attack scenario, the 

following can be executed: 

• We launch a DNS Amplification attack using 

LOIC or Hping3. 

• Monitor DNS traffic by Wire shark to observe 

suspicious packet flows. 

• Activate Snort and Suricata to evaluate the 

system’s ability to detect the attack. 

• Implement DNSSEC and Rate Limiting in 

Firewalls to block malicious queries. 

• Employ the Random Forest model to analyze 

packets and identify suspicious queries. 

Assess the accuracy of the model in 

distinguishing between normal and attack traffic. 

Also, measure the false positive rate in identifying 

benign traffic as an attack. Then, analyze the system 

response time in mitigating real-time DNS threats. 

4.4 Testing Dataset  

For our dataset, domain name system (DNS) logs 

were collected from CAIDA and DNSCAP, as well 

as publicly available DNS datasets that can be 

downloaded online. The LOIC system was used to 

attack the targets and generate DNS Amplification 

Attacks. A total of 1 million DNS queries were 

collected, with normal traffic accounting for 800,000 

queries (80%) and malicious traffic accounting for 

200,000 queries (20%). For data splitting, 70% of the 

dataset was used to train the Random Forest model, 

while the remaining 30% was reserved for model 

testing. 

5. Model Deployment 

The trained Random Forest model was applied for 

real-time DNS attack detection in an emulated 

network setting. Unknown to many, the model was 

connected to a monitoring system for a DNS server 

that performed real-time analysis on live DNS traffic 

for indications of attacks. The system flagged any 

suspicious traffic, helping network administrators 

take adequate preventative measures. 

6. Results and Discussion 

The proposed Random Forest-based detection system 

achieves a very high accuracy of 98% in detecting 

DNS Amplification Attacks, compared to prior 

methods with accuracies ranging from 85% to 93%. 

Additionally, it has a comparatively low false 

positive rate of 5%, as opposed to 6%–8%. Table 2 

presents the accuracies from previous studies 

alongside the results of our proposed model. These 

improvements ensure maximum identification of 

malicious traffic while minimizing false positives. 

Table 2: Performance Comparison between Previous Studies and the Proposed System 

Study Detection Accuracy (%) False Positive Rate (%) Response Time (MS) 

Wang et al. [1] 87 7.5 180 

Hussain et al. [6] 90 6.0 160 

Awan et al. [13] 85 8.0 200 

Sandeep and Kaluri [16] 92 6.8 150 

Ma et al. [20] 93 6.5 140 

Proposed System (2024) 98 5.0 120 

 

The proposed model reduces response time to 

120 MS, which is significantly better than previous 

models (140–200 MS). This improvement is critical 

for real-time threat detection, especially in 

environments that change frequently. The model is 

highly scalable, capable of managing large DNS 

traffic loads, and provides essential services to 

applications requiring high bandwidth, such as smart 

cities and industrial IoT. Fig. 6 illustrates the 

response time of the proposed model compared to 

traditional methods. 



Bilad Alrafidain Journal for Engineering Science and Technology 

https://doi.org/10.56990/bajest/2025.040113 
ISSN: 2073-9524 

Pages:155-169 

 

166 

 

Fig. 6 Performance Metrics Comparison 

This system is more accurate than existing 

solutions in terms of false positives and response 

time, demonstrating the efficiency of the Random 

Forest algorithm in DNS security. In the future, other 

models, such as next-generation hybrid models and 

adaptive models, may be developed to address 

evolving threats  

The proposed DNS detection system 

demonstrated significant improvements in three main 

areas: high detection accuracy for malicious events, 

low false positives, and acceptable response time, 

making it ideal for real-time cybersecurity scenarios. 

The Random Forest algorithm, with its multiple 

decision trees, provided high accuracy in decision-

making. Each decision tree contributed classification 

votes, reducing the probability of errors and 

enhancing the detection process. 

Feature selection played a crucial role in 

minimizing false positives by eliminating non-critical 

information that could misinterpret safe traffic as 

malicious. By ignoring unnecessary variables, such 

as the type of query, flow size, and response time, the 

system focused on the most relevant features. The 

model's architecture was further optimized to enable 

faster processing and response times, which are 

critical for real-time threat detection. Rapid responses 

in high-traffic environments are essential for halting 

the proliferation of attacks Fig. 7. 

This system achieved greater detection accuracy, 

fewer false alarms, and faster processing times 

compared to traditional and hybrid detection models. 

It is both precise and computationally efficient, 

requiring fewer calculations than static and dynamic 

signature-based methods, as well as sophisticated 

hybrid models commonly used in contemporary 

cybersecurity. 

 
Fig. 7 Comparison of detection accuracy, false positive rate, and response time  



Bilad Alrafidain Journal for Engineering Science and Technology 

https://doi.org/10.56990/bajest/2025.040113 
ISSN: 2073-9524 

Pages:155-169 

 

167 

For future development, this study recommends 

the creation of more advanced hybrid models that 

incorporate the latest techniques in adaptive pattern 

analysis and real-time pattern identification. These 

models would enable the system to learn and adapt to 

continuously evolving attack patterns. This approach 

would enhance the system's ability to address 

emerging threats, ensuring the sustainability and 

efficiency of network security in the future. 

7. Conclusion 

FDA-approved methods are still conventionally used; 

however, the proposed system achieved an accuracy 

of 98%, a false positive rate of 5%, and a response 

time of only 120 ms. It maintained over 97% 

accuracy even as traffic volume increased, 

demonstrating its scalability for real-time 

applications. These findings highlight the system’s 

viability for modern DNS security applications. 

Future improvements will focus on addressing 

interoperability, security, and scalability challenges 

through specific strategies. We recommend adopting 

adaptive learning for real-time pattern updates, using 

metadata to analyze encrypted traffic, integrating 

zero-day anomaly detection systems, and updating 

rules with threat intelligence feeds. 

Acknowledgements 

The author thanks the Ministry of Finance and 

Rafidain Bank (Mandali Branch 342) for their 

support. 

Conflict of Interest 

The authors declare that there are no conflicts of 

interest regarding the publication of this manuscript. 

References  

[1] Wang, Y., Zhou, A., Liao, S., Zheng, R., Hu, R., 

& Zhang, L. (2021). A comprehensive survey on 

DNS tunnel detection. Computer Networks, 

197(3), 108322. 

https://doi.org/10.1016/j.comnet.2021.108322 

[2] Shirazi, A. R., Singh, A. K., Kumar, A., & Gehlot, 

A. (2022). Detecting Malicious URLs Using 

Machine Learning Techniques: Review and 

Research Directions. IEEE Access, 10, 121395–

121417. 

https://doi.org/10.1109/ACCESS.2022.3222307 

[3] Sajid, M., Malik, K. R., Almogren, A. S., 

Rehman, A. U., & Others. (2024). Enhancing 

intrusion detection: A hybrid machine and deep 

learning approach. Journal of Cloud Computing, 

13(1). https://doi.org/10.1186/s13677-024-

00685-x 

[4] Mueller, M., Häckel, T., Meyer, P. V., & 

Schmidt, T. C. (2023). Authenticated and Secure 

Automotive Service Discovery with DNSSEC 

and DANE. arXiv. 

https://doi.org/10.48550/arXiv.2303.15128 

[5] Yi, T., Chen, X., Zhu, Y., & Han, Z. (2022). 

Review on the application of deep learning in 

network attack detection. Journal of Network 

and Computer Applications, 212(1), 103580. 

https://doi.org/10.1016/j.jnca.2022.103580 

[6] Hussain, A., Marin-Tordera, E., Masip, X., & 

Helen, L. (2024). Rule-based with machine 

learning IDS for DDoS attack detection in 

cyber-physical production systems (CPPS). 

IEEE Access, PP (99), 1-1. 

https://doi.org/10.1109/ACCESS.2024.3445261 

[7] Ravi, V., Soman, K. P., & Poornachandran, P. 

(2018). Detecting malicious domain names 

using deep learning approaches at scale. Journal 

of Intelligent & Fuzzy Systems, 34(3), 1355–

1367. https://doi.org/10.3233/JIFS-169431 

[8] Ravi, V., Alazab, M., Srinivasan, S., & Others. 

(2021). Adversarial defense: DGA-based 

botnets and DNS homographs detection through 

integrated deep learning. IEEE Transactions on 

Engineering Management, PP (99), 1–18. 

https://doi.org/10.1109/TEM.2021.3059664 

[9] Bamasag, O., Alsaeedi, A., Munshi, A., & 

Others. (2022). Real-time DDoS flood attack 

monitoring and detection (RT-AMD) model for 

cloud computing. PeerJ Computer Science, 

7(38), e814. https://doi.org/10.7717/peerj-

cs.814 

[10] Singh, R., Tanwar, S., & Sharma, T. P. (2019). 

Utilization of blockchain for mitigating the 

distributed denial of service attacks. Security 

and Privacy, 3(4), e96. 

https://doi.org/10.1002/spy2.96 

https://doi.org/10.1016/j.comnet.2021.108322
https://doi.org/10.1109/ACCESS.2022.3222307
https://doi.org/10.1186/s13677-024-00685-x
https://doi.org/10.1186/s13677-024-00685-x
https://doi.org/10.48550/arXiv.2303.15128
https://doi.org/10.1016/j.jnca.2022.103580
https://doi.org/10.1109/ACCESS.2024.3445261
https://doi.org/10.3233/JIFS-169431
https://doi.org/10.1109/TEM.2021.3059664
https://doi.org/10.7717/peerj-cs.814
https://doi.org/10.7717/peerj-cs.814
https://doi.org/10.1002/spy2.96


Bilad Alrafidain Journal for Engineering Science and Technology 

https://doi.org/10.56990/bajest/2025.040113 
ISSN: 2073-9524 

Pages:155-169 

 

168 

[11] Li, X., Cheng, J., Ruan, C., & Sun, M. (2023). 

An adaptive DDoS detection and classification 

method in blockchain using an integrated multi-

model. Computers, Materials & Continua, 77(3), 

3265–3288. 

https://doi.org/10.32604/cmc.2023.045588 

[12] Kambourakis, G., Moschos, T., & Geneiatakis, 

D. (2007). Detecting DNS amplification attacks. 

Lecture Notes in Computer Science: Critical 

Information Infrastructures Security, Second 

International Workshop, CRITIS 2007, Málaga, 

Spain, October 3-5, 2007. Revised Papers. 

https://doi.org/10.1007/978-3-540-89173-4_16 

[13] Awan, M. J., Farooq, U., Babar, H. M. A., Zain, 

A. M., Zaidi, S. M. H., Khan, H. U., Javeed, D., 

& Siddique, M. A. (2021). Real-time DDoS 

attack detection system using big data approach. 

Sustainability, 13(19), 10743. 

https://doi.org/10.3390/su131910743 

[14] Yang, S.-J., & Huang, H.-L. (2019). Design a 

hybrid flooding attack defense scheme under the 

cloud computing environment. In 2019 

IEEE/ACIS 18th International Conference on 

Computer and Information Science (ICIS). 

https://doi.org/10.1109/ICIS46139.2019.89403

13 

[15] Dissanayake, I. M. M. (2018). DNS cache 

poisoning: A review on its technique and 

countermeasures. In 2018 National Information 

Technology Conference (NITC). 

https://doi.org/10.1109/NITC.2018.8550085 

[16] Sandeep, D., & Kaluri, R. (2024). An effective 

classification of DDoS attacks in a distributed 

network by adopting hierarchical machine 

learning and hyperparameters optimization 

techniques. IEEE Access, PP (99), 1–1. 

https://doi.org/10.1109/ACCESS.2024.3352281 

[17] Lasotte, Y. B.-M., Garba, E. J., Malgwi, Y. M., 

& Buhari, M. A. (2022). An ensemble machine 

learning approach for fake news detection and 

classification using a soft voting classifier. 

European Journal of Electrical Engineering and 

Computer Science, 6(2), 1–7. 

https://doi.org/10.24018/ejece.2022.6.2.409 

[18] Pakmehr, A., Aßmuth, A., Taheri, N., & 

Ghaffari, A. (2024). DDoS attack detection 

techniques in IoT networks: A survey. Cluster 

Computing, 27(10), 14637–14668. 

https://doi.org/10.1007/s10586-024-04662-6 

[19] El Kafhali, S., El Mir, I., & Hanini, M. (2022). 

Security threats, defense mechanisms, 

challenges, and future directions in cloud 

computing. Archives of Computational Methods 

in Engineering, 29(1), 223–246. 

https://doi.org/10.1007/s11831-021-09573-y 

[20] Ma, R., Chen, X., & Zhai, R. (2023). A DDoS 

attack detection method based on natural 

selection of features and models. Electronics, 

12(4), 1059. 

https://doi.org/10.3390/electronics12041059 

[21] Oh, S. H., Kim, J., Nah, J. H., & Park, J. (2024). 

Employing deep reinforcement learning to 

cyber-attack simulation for enhancing 

cybersecurity. Electronics, 13(3), 555. 

https://doi.org/10.3390/electronics13030555 

[22] Amgbara, S., Akwiwu-Uzoma, C., & David, O. 

(2024). Exploring lightweight machine learning 

models for personal internet of things (IoT) 

device security. World Journal of Advanced 

Research and Reviews, 24(2). 

https://doi.org/10.30574/wjarr.2024.24.2.3449 

[23] Mahdavifar, S., Salem, A. H., Victor, P., 

Sandhu, R., Ahmed, S., Ghorbani, A. A., & 

Lashkari, A. H. (2021). Lightweight hybrid 

detection of data exfiltration using DNS based 

on machine learning. In ICCNS 2021: 

Proceedings of the 11th International 

Conference on Communication and Network 

Security. 

https://doi.org/10.1145/3507509.3507520 

[24] Trejo, L. A., Ferman, V., Medina-Pérez, M. A., 

Arredondo-Giacinti, F. M., Monroy, R., & 

Ramirez-Marquez, J. E. (2019). DNS-ADVP: A 

machine learning anomaly detection and visual 

platform to protect top-level domain name 

servers against DDoS attacks. IEEE Access, PP 

(99), 1–1. 

https://doi.org/10.1109/ACCESS.2019.2924633 

[25] Islam, T., Jabiullah, M. I., & Abid, D. M. H. 

(2023). DDoS attack preventing and detection 

with the artificial intelligence approach. In 

Communications in Computer and Information 

Science (Vol. 1569). Proceedings of the 4th 

International Symposium on Intelligent 

https://doi.org/10.32604/cmc.2023.045588
https://doi.org/10.1007/978-3-540-89173-4_16
https://doi.org/10.3390/su131910743
https://doi.org/10.1109/ICIS46139.2019.8940313
https://doi.org/10.1109/ICIS46139.2019.8940313
https://doi.org/10.1109/NITC.2018.8550085
https://doi.org/10.1109/ACCESS.2024.3352281
https://doi.org/10.24018/ejece.2022.6.2.409ذ
https://doi.org/10.1007/s10586-024-04662-6
https://doi.org/10.1007/s11831-021-09573-y
https://doi.org/10.3390/electronics12041059
https://doi.org/10.3390/electronics13030555
https://doi.org/10.30574/wjarr.2024.24.2.3449
https://doi.org/10.1145/3507509.3507520
https://doi.org/10.1109/ACCESS.2019.2924633


Bilad Alrafidain Journal for Engineering Science and Technology 

https://doi.org/10.56990/bajest/2025.040113 
ISSN: 2073-9524 

Pages:155-169 

 

169 

Computing Systems, Universidad de Chile, 

Santiago, Chile. https://doi.org/10.1007/978-3-

030-98457-1_3 

[26] Fesl, J., Konopa, M., & Jelínek, J. (2023). A 

novel deep-learning based approach to DNS 

over HTTPS network traffic detection. 

International Journal of Electrical and Computer 

Engineering (IJECE, 13(6), 6691–6700. 

https://doi.org/10.11591/ijece.v13i6.pp6691-

6700 

[27] Najar, A. A., Sugali, M. N., Lone, F. R., & 

Nazir, A. (2024). A novel CNN-based approach 

for detection and classification of DDoS attacks. 

Concurrency and Computation: Practice and 

Experience, 36(19), e8157. 

https://doi.org/10.1002/cpe.8157 

[28] Al-khayyat, A. T. K., & Ucan, O. N. (2024). A 

multi-branched hybrid perceptron network for 

DDoS attack detection using dynamic feature 

adaptation and multi-instance learning. IEEE 

Access, 12(3), 192618–192638. 

https://doi.org/10.1109/ACCESS.2024.3508028 

https://doi.org/10.1007/978-3-030-98457-1_3
https://doi.org/10.1007/978-3-030-98457-1_3
https://doi.org/10.11591/ijece.v13i6.pp6691-6700
https://doi.org/10.11591/ijece.v13i6.pp6691-6700
https://doi.org/10.1002/cpe.8157
https://doi.org/10.1109/ACCESS.2024.3508028

